THE COLLEGE OF THE BAHAMAS

COURSE ABBREVIATION & NUMBER

					П	E IV.	L	3	3	1
SCHOOL: NATUR	AL SCIENCE	ES & EN	NVIRONME	ENTAL S	<u>STUD</u>	<u>IES</u>				
DEPARTMENT: C	HEMISTRY									
COURSE TITLE: N	MODERN ME ORGANIC CO			RMININ	IG TH	E STRU	CTURI	E OF		
COURSE DESCRIPE This course introduce analytical instruments explored.	es students to t	he proc	ess of interp	retation	of spe	ctra prod	uced by			
PURPOSE OF COU	JRSE:									
University Transfer College Diploma or C College Degree Upgrading	Certificate	(X) External Examin () Recreational/Ge (X) Interest (non-creation) () Professional De				General ()				
PRE-REQUISITE(S	S): CHEM 23	0 or per	rmission of t	he Chair	perso	n/Instruct	or			
CO-REQUISITE(S)	: NONE									
HOURS PER WEE	K: Lecture	3	Laborator	y 0	S	eminar _		T	utorial	
LAB/TUTORIAL F	EES: NONE	<u>.</u>								
SEMESTER HOUR	CREDITS:	3								
SEQUENTIAL CO	URSE(S): NO	ONE								
OTHER COB COU	RSES HAVI	NG CO	NTENT O	VERLA	P: CF	HLB 330				
COURSE DEVELO	, ,		O() BY: ny Davis	Da Da		nuary 10,	2003			
APPROVALS:	Chair of School:Head of Department:									

NOTE:

1. A detailed course description must be attached. This must include course objectives, list of topics covered, prescribed textbooks, reading list, method of assessment, and external examinations which are prepared for in this course.

Academic Board: _____ Date: __

- 2. The course description must be suitable for distribution to students.
- 3. Only lecturers/instructors approved by The College will be allowed to teach this course.

THE COLLEGE OF THE BAHAMAS SCHOOL OF NATURAL SCIENCES AND ENVIRONMENTAL STUDIES DEPARTMENT OF CHEMISTRY

CHEM 331 – Modern Methods of Determining the Structure of Organic Compounds 3 semester hour credits

Course Description

This course introduces students to the process of interpretation of spectra produced by modern analytical instruments. Forensic, medical, pharmaceutical and other industrial applications are explored.

Specific Objectives

Upon successful completion of this course, students will be able to

- 1. analyse and interpret infrared, ultraviolet, nuclear magnetic resonance and mass spectra;
- 2. interpret multiple kinds of spectra to elucidate the structure of unknown compounds;
- 3. evaluate the suitability of various techniques for the elucidation of organic structures; and
- 4. design appropriate methodology for the confirmation of organic structures.

Course Content

A. Molecular Formula

- 1. Elemental analysis
- 2. Calculation of empirical formula
- 3. Calculation of percent composition from combustion data
- 4. Use and calculation of the index of hydrogen deficiency

B. Infrared (ir) Spectroscopy

- 1. Types of energy and their resulting molecular transitions
- 2. Modes of vibration and bending
- 3. Bond properties and absorption trends
- 4. Use of ir correlation charts to determine the presence of the major functional groups

C. Ultraviolet (uv) Spectroscopy

- 1. Electronic excitations
- 2. Origins of uv band structure
- 3. Beer's Law and its application to purity calculations
- 4. Choosing solvents
- 5. Auxochromes and substitutent effects
- 6. Effect of conjugation
- 7. Visible spectra
- 8. Use of uv spectra to determine chemical structure

D. Mass Spectroscopy (ms)

- 1. General overview of the mass spectrometer
- 2. Features of a mass spectrum
 - a. resolution
 - b. isotopes
 - c. relative abundance of M, M+1 and M+2 peaks
- 3. Use of ms to determine chemical structure

E. Nuclear Magnetic Resonance (nmr)

- 1. Nuclear spin states and magnetic resonance
- 2. The continuous wave (cw) and Fourier Transform (FT) nmr spectrometer
- 3. Equivalent hydrogens, chemical environment and chemical shift
- 4. Measurement of spectra
- 5. Interpretation of ¹H and ¹³C nmr spectra

THE COLLEGE OF THE BAHAMAS SCHOOL OF NATURAL SCIENCES AND ENVIRONMENTAL STUDIES DEPARTMENT OF CHEMISTRY

CHEM 331 – Modern Methods of Determining the Structure of Organic Compounds 3 semester hour credits

Assessment

Homework assignments	15%
Class tests	15%
Mid-semester test	15%
Project/case study	15%
Final exam	<u>40%</u>
Total	100%

The mid-semester test and the final exam will consist of two parts, (i) a closed book section, followed by (ii) an open book section.

Required Text

Webster, F. X., & Silverstein, R. M. (2003). *Spectrometric identification of organic compounds* (7th ed.). New York: John Wiley & Sons. ISBN 0-471-13457-0

Supplementary Readings

- **Brown, W.H., & Foote, C.S.** (2002). *Organic chemistry* (3rd ed.). New York: Harcourt College Publishers. ISBN 0-03-033497-7
- **Bruice, P.Y**. (2001). *Organic chemistry* (3rd ed.). New Jersey: Prentice Hall, Inc. ISBN 0-13-017858-6
- **Pavia, D.L., Lampman, G.M., & Kriz, G. S. Jr.** (1979). *Introduction to spectroscopy*. New York: Saunders College Publishing. ISBN 0-7216-7119-5
- **Williams, D. H., & Fleming, I**. (1998). *Spectroscopic methods in organic chemistry* (4th ed.). New York: McGraw Hill Book Company. ISBN 0-07-707212-X