CHEMISTRY 235 EXPERIMENT 7 QUALITATIVE ANALYSIS

METHOD AND RESULTS

You are given eight compounds containing FOUR of the anions HCO_3^- , CO_3^{2-} , CH_3COO^- , $HCOO^-$, $(COO)_2^{2-}$, Γ , Br⁻, and Cl⁻. Identify the anion present in each case. Write equations wherever appropriate in the deduction column. In a number of cases gases are evolved. You should carry out tests on these gases to identify them.

COMPOUND A

TEST	OBSERVATIONS	DEDUCTIONS
 Add dil. HCl or dil.H₂SO₄ to the solid. 		
2. Make a soln. of A and use it for the following tests.		
a) Add BaCl ₂ (aq) or Ba(NO ₃) ₂ (aq) then dil. HCl or dil. HNO ₃ ⁻		
b) Add MgSO4(aq)		

PAGE 1 OF 4 FBB NASC 4/10/91 C235 P5 V.1.0 2hr.

COMPOUND B

	TEST	OBSERVATIONS	DEDUCTIONS
1.	Heat some of solid B		
2.	Add dil. HCl or dil. H ₂ SO ₄ to solid B		
3.	Prepare a soln. of B and use it for the following tests.		
a)	Add BaCl ₂ (aq) or Ba(NO ₃) ₂ (aq) then dil. HCl or dil. HNO ₃ .		
b)	Add MgSO ₄ (aq) and heat.		

COMPOUND C

	TEST	OBSERVATIONS	DEDUCTIONS
1.	Heat some solid C.		
2.	Add dil. HCl or dil. H ₂ SO ₄ to solid C. Warm.		
3.	Add a few drops of conc. H ₂ SO ₄ to solid C. Warm.		
4.	Make a soln. of C and use it for the following tests.		
a)	Add 1 cm ³ conc. H_2SO_4 and 2 cm ³ C_2H_5OH . Warm. Pour into cold water in a beaker.		
b)	Add <i>neutral</i> ¹ FeCl ₃ (aq) then dil. HCl.		
c)	Add AgNO ₃ (aq) and leave to stand for a few minutes.		

PAGE 3 OF 4 FBB NASC 4/10/91 C235 P5 V.1.0 2hr.

COMPOUND D

	TEST	OBSERVATIONS	DEDUCTIONS
1.	Add dil. HCl or dil. H_2SO_4 to some solid D. Warm.		
2.	Add a few drops conc. H ₂ SO ₄ to solid D. Warm.		
3.	Make a soln. of D and use it for the following tests.		
a)	Add 1 cm ³ conc. H_2SO_4 and 2 cm ³ C ₂ H ₅ OH. Warm and pour into a beaker of water.		
b)	Add <i>neutral¹</i> FeCl ₃ (aq) then dil. HCl.		

¹ Test the FeCl₃(aq) with litmus. If it is acidic, add dil. $NH_3(aq)$ dropwise until a very faint precipitate appears. If you overshoot add FeCl₃(aq) dropwise until the cloudiness has nearly disappeared.