THE COLLEGE OF THE BAHAMAS NATURAL SCIENCES DIVISION

FINAL EXAMINATION 04-2001

CHEM 235 - INORGANIC CHEMISTRY

Time: 3 hours

INSTRUCTIONS: Answer all questions

This paper has TWO sections.

Section A: 40 Multiple choice questions

Follow the instructions at the top of the answer sheet.

Section B: 6 Structured questions

Answer there in the spaces provided on the question paper.

SECTION A: Multiple Choice questions (40 marks)

For each of the following questions mark the letter corresponding to most appropriate answer on the multiple choice answer sheet provided

1. For the electron shell with n = 3, what are the possible values of secondary quantum number <i>l</i> ? (A) 0, 1, 2, 3 (B) -3, -2, -1, 0, 1, 2, 3 (C) 1, 2, 3 (D) 0, 1, 2 (E) 4,2,1				
2. What is the designation of the subshell for which n = 3 and l = 1? (A) 4s (B) 3p (C) 3d (D) 2p (E) 4p				
3. What is the total number of electrons that a shell with $n=2$ will hold (A) 2 (B) 6 (C) 8 (D) 18 (E) 21	1?			
 4. "No two electrons in the same atom can have all four quantum numb a statement of: (A) Hund's Rule. (B) Aufbau Principle. (C) Pauli Exclusion P (E) Avogadro's rule 				
5. In the following sets of elements, which sequence shows decreasing left to right? (A) {F, Na, Cl, Cs} (B) {F, Cl, Na, Cs} (C) {Cs. Cl, Na, F} (D) {Cs, Na, Cl, F} (E) None of above	first ionization energies from			
6. The halogen that is a liquid under room condition is (A) chlorine (B) iodine (C) fluorine (D) bromine	(E) None of above			
 7. One of the following substances dissolves in water giving a solution very well. Which one? (A) glucose, C₆H₁₂O₆ (B) carbon tetrachloride, CCl₄ (C) magnesium chloride, MgCl₂ (D) ethane, C₂H₆ (E) bromine, Br₂ 	n that conducts electricity			
8. Which of the following molecules is linear? (A) CH_4 (B) CO_2 (C) H_2O	(D) SO_3 (E) H_2S			
9. The shape of the ammonia molecule is (A) tetrahedral (B) linear (C) planar (D) pyramidal	(E) square			
10. Which of the following is a <u>weak</u> acid? (A) HCN (B)HCl (C) H ₂ SO ₄ (D) HNO ₃	(E) KOH			
11. Three of the species listed are isoelectronic. Pick the one that does not have the control of the species listed are isoelectronic. Pick the one that does not have the control of the species listed are isoelectronic. Pick the one that does not have the control of the species listed are isoelectronic. Pick the one that does not have the control of the species listed are isoelectronic. Pick the one that does not have the control of the species listed are isoelectronic. Pick the one that does not have the control of the species listed are isoelectronic. Pick the one that does not have the control of the species listed are isoelectronic. Pick the one that does not have the control of the species listed are isoelectronic. Pick the one that does not have the control of the control of the species listed are isoelectronic. Pick the one that does not have the control of the control o				
12. The electron configuration of sulfur (S) is [Ne]3s ² 3p ⁴ . In view of the to form most readily? (A) S ³⁺ (B) S ²⁺ (C) S ⁻ (D) S ²⁻ (E) None of above	at, which species is expected			
13.One of the following substances is a <u>strong</u> base. Which one? (A) NH ₃ (B) KOH (C) H ₂ CO ₃ (D) KNO ₃	(E) CH₃COOH			
14. From its position in the Periodic Table, the most stable ion of the Z	= 55 element Cesium is likely			
to be: (A) Cs^+ (B) Cs^{2+} (C) Cs^{3+} (D) Cs^2	(E) Cs			
15. Which oxide forms nitrous acid upon dissolving in water? (A) N_2O (B) NO (C) NO_2 (D) N_2O_5 (E) All the at	pove			
16. Which of the following compounds exhibits hydrogen bonding?				

(D) HI

 $(C) PH_3$

(A) CH_4 (B) H_2O

(E) NaH

17.	Consider the Lewis a covalent double b	ond?		_		eld together by
	$(A) H_2$	(B) NH ₃	(C) PBr ₃	(D) O_2	$(E) C_2H_6$	
18.	The hydrides of Silica (A) Silica	icon is known as B) Silates	(C) Silanes	(D) Silon	es E) None	of above
19.	Which of the follow (A) Ca	wing atoms has t (B) Mg	he <u>largest</u> siz (C) P	e? (D) F	(E) S	
20.	Which of the follow (A) N (B) N		the <u>smallest</u> s (D) N ²⁺		nave the same si	ze
21.	What is the formula if phosphorus has a (A) PS (B) PS ₂ (C) PS ₃ (D) P ₂ S ₅ (E) P ₅ S ₂				osphorus reacts	with sulfur
22.	(A) C ₂ H ₂ (B) HF (C) BH ₃ (D) H ₂ S (E) PH ₃	wing compounds	s exhibits hyd	rogen bondin	g?	
23.	The cyanide ion (C) (A) single (B)	N) has a/an double (C) tri				
24.	A bond where the el (A) polar covale	ectrons are unequent (B) nonpolar				James
25.	Which bond is the le (A) N-H (I					
26.	Which of the follow (A) formed by e (B) low melting (C) very strong (D) the smallest (E) all are true	electron transfer points				
	The electron configu		(S) is [Ne]3s ²	3p ⁴ . In view o	of that, which sp	ecies is expected
	to form most readily (A) S ³⁺ (B) S ²⁺	? (C) S ⁻	(D)	S ²⁻ (E	E) S ³⁻	
28.	What is the total nur (A) 32				E) None of the a	bove
29.	A natural source of (A) trona	Aluminum is (B) limestone	e (C)	Brine	(D) aluma	(E) bauxite
30.	What is the shape of (A) tetrahedral (E) None of abo	(B) trigonal bip	oyramidal ((C) octahedral	(D) planar he	exagonal
31.	Aluminum is prepar (A) reduction of (B) reduction of (C) electrolysis (D) calcining an (E) None of abo	FAICl ₃ with CO FAl ₂ O ₃ with H ₂ of a melt of Al ₂ O ₃ aluminum ore	O ₃ dissolved	in Na₃AlF ₆ .		
32.	Sulfur trioxide disso (A) sulfurous ac	lves in water for id. (B) sulfite i	ming: ons. (C) su	lfide ions. (I	D) sulfuric acid.	(E) sulfur monoxide.

33. Ca	a(C ₂ H ₃ O ₂) ₂ is: (A) cadmium acetate (B) calcium acetate (C) cadmium carbonate (D) calcium carbonate (E) calcium sulfate
34. W	Thich of the following molecule is linear. (A) N ₃ (B) BF ₃ (C) CO ₂ (D) H ₂ O (E) B ₂ H ₆
35. Th	ne electron configuration of an element is $1s^22s^22p^63s^23p^64s^23d^{10}4p^5$ (A) The element is in group VA of the Periodic Table and is a metalloid. (B) The element is a transition metal and shows different oxidation states in its compounds. (C) The element is a halogen which forms anions with a charge of -1 in its compounds with metals. (D) The element reacts rapidly with water to form hydrogen gas and a conducting solution. (E) The element is a metal and will not conduct electricity.
36. Th	ne most powerful <u>reducing agent</u> among the following five species is: (A) Na metal. (B) Na ⁺ ions. (C) Au metal. (D) Au ³⁺ ions. (E) H ₂ gas.
37 . Ca	arbon dioxide dissolves in water forming: (A) carbonate ions, CO ₃ ²⁻ (B) bicarbonate ions, HCO ₃ ⁻ (C) carbonic acid, H ₂ CO ₃ (D) acetic acid, CH ₃ COOH (E) none of these
38. Th	the elements in this pair do NOT have similar chemical properties (A) boron and silicon (B) lithium and magnesium (C) fluorine and argon (D) beryllium and magnesium (E) None of above
39. Th	the oxidation number of chlorine in ClO_4^- is $(A) +8 \qquad (B) +7 \qquad (C) +3 \qquad (D) +1 \qquad (E) -1$
40. Th	the compound of KO ₂ is (A) Normal oxide (B) peroxide (C) super oxide (D) all the above. (E) None of above
	TON B er all questions in the spaces provided
1 a .	Distinguish clearly between sigma and pi bonding (1)
	Draw all the orbitals that can combine to form sigma bond and show how they combine. (3)
b.	When ammonia and boron trifluride (BF ₃) are mixed, a reaction occurs and a compound of molecular formula NBH ₃ F ₃ is formed. Draw to show the covalent and the dative bond in the compound.

c.	The bond angles of the following hydrides CH ₄ , NH ₃ and H ₂ O are 109,107 and 104 respectively						
	(i)	Using VSEPR theory draw the shape of each of the molecule.	(3)				
	(ii)	Suggest why there are variations in the bond angles.	(1)				
d.	(i)	What is a polar covalent bond?	(1)				
	(iii)	In what circumstances will a covalent bond be polar?	(1)				
	(iv)	In what circumstances will an anion be polarized?	(1)				
	(v)	The table below shows electronegativity values for some atoms. $ \begin{array}{ c c c c c c }\hline H & N & O & F & C1\\\hline 2.1 & 3.0 & 3.5 & 4.0 & 3.0\\\hline Use the data above in the table to suggest the nature of the bonding is following substances. Give reasons for your suggestion. (i) cesium fluoride$	Cs 0.7 n each of the (3)				
		(ii) water					
		(iii) Chlorine					
2.	of two	one electron is added to oxygen molecule, a superoxide ion (O_2^-) is for electrons gives a peroxide ion $(O_2^{2^-})$. Removal of electron from O_2 to onstruct the molecular diagram for $O_2^{2^-}$.					

CHEM 235 FINAL EXAMINATION SEMESTER 04 -2001

	(b)	Give molecular electronic configuration O_2^+ , O_2 , O_2^- , O_2^{2-} .	n for eac	h of the following:	(4)
	(c)	Work out the bond order of each specie	es.		(4)
	(d)	Predict the order of increasing bond en	ergy amo	ong the species.	(1)
	(e)	Predict which species should be parama	agnetic.		(1)
3a.		Using the Born-Haber cycle calculate the following data: standard heat of formation of CaCl ₂ Heat of sublimation of Ca(s) Dissociation energy of CL(g) Ionization energy of Ca(g) to Ca ²⁼ (g) Electron affinity of Cl(g)	ne lattice	energy of calcium chloridation of the control of th	ide, $CaCl_2$, from the

3b. Rubidium crystallizes in the bcc system, the radius of the atom being 2.47 A. What is the density? (Atomic mass of Rubidium = 85.47) **(5)**

3c. The following diagram represents the crystalline structure of Iron at room temperature (293K).

(i) What is the name given to the above structure. (1)

(ii) What is the coordination number of the central Iron in the given structure?

(1)

The atomic radii of atoms can be determined by measuring the side of the cubic structure. (iii) If the side of the above cube is 363 pm. Calculate the radius of the iron atom, state any assumptions you make. Note: $1 \text{ pm} = 10^{-12} \text{m}$ [molar mass of iron = 55.8]

CHEM 235 FINAL EXAMINATION SEMESTER 04 -2001

4a	The s-block elements form three kind of oxide, Normal oxide, peroxide and superoxide, ionic equations only show how each of these oxide will react with water. (4)				
b.	(i)	What gives rise to diagonal relationship in the periodic table?	(1)		
	(ii)	Give two anomalous behavior of lithium when compare with the rest of the group.	the element in (2)		
	(iii)	Give reasons for these strange behaviors of lithium.	(1)		
c.	Write (i)	chemical equation to show the thermal decomposition of the following con Barium hydroxide	mpound. (1)		
	(ii)	Lithium nitrate	(1)		
	(iii)	Sodium carbonate	(1)		
	(iv)	Magnesium nitrate	(1)		
d.	Explair (i)	n each of the following statement. Boron does not form simple compounds containing the B ³⁺ ion.	(1)		
	(ii)	Aluminum chloride is predominantly covalent whereas aluminum fluorid predominantly ionic.	e is (1)		

5a. Compare and contrast the properties of the Group IV chloride by completing the table below. (3)

	Tetrachloromethane	Silicon tetrachloride	Lead (II) chloride
Physical state at room temperature			
Electrical conductivity when liquid			
Effect of adding water at room temperature			
Type of bonding			

b. Give names for the following compound:

(3)

- (i) Na_2SO_3 -
- (v) $Na_2S_2O_3$ -
- (vi) NaClO₂ -
- c. Show by Lewis diagrams, indicating all lone pairs and bonding pair in
- (2)

- (i) SO_3^{2-}
- (ii) $S_2 O_8^{2-}$
- d. Complete and balance the following equation

(2)

- (i) SO_3 + H_2O \rightarrow
- (ii) CO_2 + NaOH \rightarrow

CHEM 235 FINAL EXAMINATION SEMESTER 04 -2001

6.	(a)	heptoxide, Cl_2O_7 . Write a balance ionic equations for each oxide	xide, Cl_2O ; chlorine dioxide, ClO_2 ; chlorine hexoxide, Cl_2O_6 ; chlorine O_7 . Write a balance ionic equations for each oxide to show their reaction			
		with askatine solution (OH).	(4)			
	(b)	The following are oxy acid of chlorine HOClO, HOClO ₃ , HOClO ₂ , HOCl.				
		(i) Arrange the following acids in increasing order of the stre	ength of the acid. (1)			
		(ii) Give reason(s) for the arrangement.	(1)			
	c.	Give all the properties of a Transition metals	(4)			