THE COLLEGE OF THE BAHAMAS

NASSAU

FREEPORT

EXAMINATION FOR THE FALL SEMESTER, 042000

SCHOOL: NATURAL SCIENCES AND ENVIRONMENTAL STUDIES

COURSE NUMBER: CHEM 230

COURSE TITLE: ORGANIC CHEMISTRY

Date and Time:

Duration: 3 Hours

(To be entered by Examination Office)

INSTRUCTION TO CANDIDATES: This paper has 6 pages and 25 questions.

Follow instructions given.

THE COLLEGE OF THE BAHAMAS **Natural Sciences Division**

Organic Chemistry - C230

Final Examination semester 2000-04

Decembe	th 2000	
Time:	3.0 hours	-waterant
INSTRUCTIONS TO CANDIDATES: This parinstructions provided in each section.	per has pages and questions. Follow	the
Section A: Multiple Choice. Select the ansanswer on the multiple choice answer sheet a you wish to change your answer, erase the first	is indicated. You should use a #2 (HB) penci	il. If
Select the appropriate IUPAC name for the structure shown below :	C. 3 D. 2 E. 1	
	6. The general formula for an amide is:	
A . 4-bromophenol	A. RC=NH	
B. o-bromophenol C. m-bromophenol	B. RCNH₂	
D. p-bromophenol E. 4-bromocyclohexanol	C. RC = NH	
 2. Which one of the following substances exhibits cis-trans isomerism? A. 1-butene B. 2,3-dichloro-2-butene C. 2,3-dichlorobutane D. hexachloroethane E. phenol 	D. H₂N-R-COQH	
	E. RCNH ₂	
	7. Which product is most likely to be form when hydrogenbromide reacts with 1-pentene?	ed
3. The products of heterolytic bond cleavage are:	A. 2-bromopentane	

- B 1-bromopentane
- C. trans -2,3-dibromopentane
- D. cis -1,2-dibromopentane
- E. pentane
- 8.A compound X was treated with a solution of silver ions in aqueous ammonia. A silver mirror was formed on the inner walls of the reaction vessel. Compound \boldsymbol{X} is likely to belong to which group?
 - A. tertiary alcoholsicohol
 - B. carboxylic acids
 - C. ketones
 - D. aldehydes E. ethers

A. 1-chloropropaneB. 3-hexene

the hydroxide ion

B. two radicals

D. two carbocations

- C. 2-methyl-2-chloropropane
- D. cyclohexane
- E. none of the above
- 5. The maximum number of structural isomers of C₄H₁₀ that can be formed is

A. a positive ion and a negative ion

C. one radical and a neutral molecule

E. two neutral, smaller molecules

4. Select the compound most likely

to undergo an S_N2 reaction with

- A. 5
- B. 4

- 9.A secondary carbon is bonded directly to :
 - A. 2 hydrogens
 - B. 2 carbons
 - C. 3 hydrogens
 - D. 4 carbons
 - E. any three atoms

- 10. 2-methyl 2 pentene was subjected to ozonolysis. The products of the reaction would be:
 - A. propanone and propanal
 - B. ethanal and 2-pentanone
 - C. 2-propanol and proponone
 - D. propanoic acid and propanal E. 2-methyl-2,3-pentanediol
- 11. When butanoic acid is heated with concentrated sulphuric acid and propanol a sweet smelling compound is formed. Suggest the identity of this product.
 - A. butylpropanoate
 - B. propylbutanoate
 - C. butoxypropylether
 - D. propylbutylether
 - E. propylester
- 12. The complete combustion of one mole of cyclobutane C₄H₈ produces how many moles of H₂O?
 - A. 8
 - B. 4
 - C. 2
 - D. 1
 - E. 0
- 13. When ethane is treated with Cl₂ in the presence of ultraviolet light the organic products are
 - A only chloroethane
 - B. 1,1 dichloroethane and 1,2 - dichloroethane
 - C. hexachloroethane
 - D. a mixture of compounds containing 1 to 6 chlorine atoms per molecule
 - E. only hydrogen chloride
- 14. In a carbon to carbon triple bond there are
 - A . one π and two σ
 - B. three π bonds
 - Clone σ and two π bonds
 - D. three o bonds
 - E three sp² hybridized orbitals

15 Amides are

- A. all acidic
- B. all basic
- C. all neutral
- D. some are acidic, some are neutral
- E. some are basic some are neutral
- 16. Which of the following has the HIGHEST boiling point?
 - A. CH₃CH₂CH₃
 - B. CH₃ CH₂CH₂CH₃
 - C. CH₃ CH₂OH
 - D. CH₃ O-CH₃
 - E. CH₄
- 17. Which statement is TRUE? Chiral molecules..
 - A. do not rotate the plane of polarized light
 - B. cannot be superimposed on their mirror images
 - C. have cis and trans isomers
 - D. contain only chiral carbon atoms
 - E. are less reactive than non-chiral molecules

Questions 18 - 20 refer to the following types of reaction:

Select the type of reaction which applies to each of the following-

- A. radical substitution
- B. elimination
- C. nucleophilic addition
- D. nucleophilic substitution
- E. electrophilic addition
- 18. The bromination of propane
- 19. The hydrolysis of 2-chloro-2methylpropane to 2-methyl-2-propanol
- 20. The production of 2-methylpropene from 2-bromo-2-methylpropane

Section B: Structured Questions, Answer the questions in the spaces provided.

1. The following diagram is a summary of selected reactions. Examine the diagram then complete the table which follows. (10)

a. REACTION	REAGENTS & REACTANTS	NAME OF THE MAIN PRODUCT
А		
В		
С		
D		
E		
·	escribe the conditions necessary for reac	
procedural analysis of the procedure and the pro		
~.		
Participation of the second of		

2. The Hydrolysis of 2-bromo-2-methylbutane proceeds by the following mechanism:

Step 1:
$$\begin{array}{cccc} CH_3 & CH_3 \\ & & \\ C_2H_5--C-Br & \longrightarrow & C_2H_5--C \textcircled{+} & +Br \\ & & \\ CH_3 & CH_3 & CH_3 \end{array}$$

Step 2:
$$CH_3$$
 CH_3 CH_4 CH_5 CH_5 CH_5 CH_5 CH_5 CH_5 CH_5 CH_5 CH_5

- a. From the mechanism, deduce the order of the reaction. (1)
- b. Is this an S_N1 or an S_N2 mechanism? (1)
- c. Justify your answer to part b. (1)
- d. Which substance acts as the nucleophile in this reaction ? (1)
- e Store the reaction machanism most likely to be used by bromoethanes Justify your choice . 137

f. Identify the leaving group (1)

3.	The carbon atoms associated with a C=C bond are especially vulnerable to electrophilic attack whereas the carbon of the carbonyl C=O functional group is more vulnerable to nucleophilic attack. How do you account for these observations (3)	
4.	 a. Benzene is an unsaturated compound. However it undergoes substitution reactions rath than addition reactions. Suggest a reason for this unusual behaviour. (2) 	er
	Illustrate aromatic substitution, showing all the steps in the fomation of EITHER propylbenzene OR nitrobenzene. Specify any special conditions/reactants/reagents needs for the reaction to occur. (5)	; d
c. E ben	plain why methylbenzene (toluene) should be expected to react significantly faster than ene in the reactions described in part b. (1)	1
d. Ir m	nitration, 60% of the product was orthonitrotoluene., 37 % was para nitrotoluene and 3 % eta nitrotoluene How do you account for this distribution ? (3)	

- 5. 2-chloro-2-methylpropane may undergo both a substitution reaction and an elimination reaction in the presence of ethanol (80% water/ 20% ethanol).
 - a. Illustrate the mechanism leading to an elimination product. (3)

b. In this reaction, the main product (64%) is actually the substitution product.
 Suggest two reasons why the sustitution reaction is favoured over the elimination one.
 (3)