Student Name.....Student Number....Section....

You may use the following information wherever necessary:

a)
$$R = 8.31 \text{ J mol}^{-1} \text{ K}^{-1} = 0.0821 \text{ atm dm}^3 \text{ mol}^{-1} \text{ K}^{-1} = 0.0821 \text{ atm L mol}^{-1} \text{ K}^{-1}$$

b)
$$k = Ae^{-Ea/RT}$$
 g) $K_w = 1.0 \times 10^{-14}$ at 298 K

c)
$$\ln \frac{k_2}{k_1} = \frac{E_a}{R} \times \frac{(T_2 - T_1)}{T_1 T_2}$$
 h) $K_a \text{ (CH}_3 \text{COOH)} = 1.8 \times 10^{-5}$

d)
$$\ln \frac{[A]_t}{[A]_0} = -kt$$
 i) $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$

e)
$$t_{1/2} = \frac{\ln 2}{k} = \frac{0.693}{k}$$
 j)
$$pH = pK_a + \log \frac{[base]}{[acid]}$$

f)
$$K_{p} = K_{c} (0.0821T)^{\Delta n(gas)}$$
 k) $E = E^{o} - \frac{0.059}{n} \log Q$

Section A: Multiple Choice

Select the best answer for each question and shade the letter corresponding to the answer on the answer sheet provided.

[35 marks]

Questions 1-3

The reaction $2NO_2^-(aq) + 4H^+ + 2I^-(aq) \rightarrow I_2 + 2NO(g) + 2H_2O(l)$ is first order in nitrite ion and iodide ion and second order in hydrogen ion.

1. The rate law for the reaction is

A Rate =
$$k [NO_2^-]^2 [H^+] [I^-]^2$$

B Rate =
$$k [NO_2^-]^2 [H^+][I^-]$$

C Rate =
$$k [NO_2][H^+]^2[I]$$

D Rate =
$$k [NO_2] [H^+] [I^-]^2$$

E Rate =
$$k [NO_2^{-1}]^2 [H^+]^4 [I^-]^2$$

2. If the rate of the reaction is expressed in M s^{-1} , the correct unit for the rate constant, k, is

A
$$M^{-2} s^{-1}$$

B
$$M^2 s^{-1}$$

$$C M s^{-1}$$

D
$$M^{-2} s^{-2}$$

E
$$M^{-3} s^{-1}$$

3. By what factor would the rate of the reaction change if the concentrations of all the reactants are doubled?

4. Ammonia can be oxidized according to the equation:

$$4 \text{ NH}_3(g) + 5 \text{ O}_2(g) \rightarrow 4 \text{ NO } (g) + 6 \text{ H}_2\text{O } (g)$$

If in a particular reaction the $\Delta[NO]$ is 0.006 mol dm⁻³, then $\Delta[O_2]$, in mol dm⁻³, is

- A $-5/4 \times 0.006$
- B $5/4 \times 0.006$
- C $-4/5 \times 0.006$
- D $4/5 \times 0.006$
- E $4 \times 5 \times 0.006$
- 5. Which statement best explains the observation that reaction rates increase when temperature is increased?
 - A At a higher temperature the energy of activation is reduced.
 - B At a higher temperature the energy of activation is increased.
 - C At a higher temperature the concentration of the reactants is higher.
 - D At a higher temperature a larger fraction of reactant molecules have sufficient energy to form the transition state.
 - E At a higher temperature there is no need to form the transition state.
- 6. Which statement about catalysts is **NOT** true?
 - A A catalyst has no effect on the enthalpy change for the reaction which it catalyses.
 - B A catalyst does not participate in the reaction which it catalyses.
 - C Catalysts are specific in their action.
 - D A catalyst changes the rate of the forward and reverse reactions for a reversible reaction by the same factor.
 - E A catalyst does not affect equilibrium position for a reversible reaction.
- 7. The following mechanism has been proposed for a reaction:

Step 1:
$$H_2O_2(aq) + I^{-}(aq) \rightarrow H_2O(1) + IO^{-}(aq)$$
 slow

Step 2:
$$IO^{-}(aq) + H_2O_2(aq) \rightarrow H_2O(1) + O_2(g) + I^{-}(aq)$$
 fast

Which statement is **NOT** consistent with this proposed mechanism?

- A The overall reaction is: $2 \text{ H}_2\text{O}_2 \text{ (aq)} \rightarrow 2 \text{ H}_2\text{O (l)} + \text{O}_2 \text{ (g)}$
- B IO is a reactive intermediate.
- C I is a catalyst.
- D The reaction is first order with respect to the catalyst.
- E The reaction is second order with respect to H_2O_2 .

Student Name.....Student Number....Section.....

8. 0.24 mol of NO_2 and 0.20 mol of Cl_2 were introduced into a 1 dm³ vessel at constant temperature. When the system reached equilibrium, 0.16 mol of NOCl was present.

The reaction is: $2 \text{ NO}_2(g) + \text{Cl}_2(g) \rightleftharpoons 2 \text{NOCl } (g)$.

Which set of values shows the concentration of each gas at equilibrium?

	$[NO_2]/moldm^{-3}$	$[Cl_2]/moldm^{-3}$	[NOCl]/moldm ⁻³
A	0.08	0.12	0.16
В	0.08	0.04	0.16
C	0.08	0.08	0.16
D	0.16	0.08	0.16
E	0.12	0.12	0.16

9. The equilibrium constant for the reaction $P(aq) \rightleftharpoons Q(aq)$ is 3.2×10^{-5} .

Which of the following statements is **TRUE**?

- A The equilibrium concentration of P is less than that of Q.
- B The equilibrium concentration of P is greater than that of Q.
- C Adding a suitable catalyst will increase the equilibrium concentration of Q.
- D Adding a catalyst will increase the value of the equilibrium constant.
- E Adding more P to an equilibrium mixture of P and Q will increase the value of the equilibrium constant.
- 10. For which equilibrium system, at constant temperature, will decreasing the volume <u>not</u> cause the equilibrium position to shift?

A
$$2 CO(g) + O_2(g) \rightleftharpoons 2 CO_2(g)$$

B
$$C(s) + O_2(g) \rightleftharpoons CO_2(g)$$

$$C \qquad COCl_2(g) \rightleftharpoons CO(g) + Cl_2(g)$$

D
$$2 \text{ NH}_3(g) \rightleftharpoons N_2(g) + 3 \text{ H}_2(g)$$

E
$$CaCO_3(s) \rightleftharpoons CaO(s) + CO_2(g)$$

11. Consider the process: $Fe_2O_3(s) + 3H_2(g) \rightleftharpoons 3H_2O(g) + 2Fe(s)$ $\Delta H = +98.7 \text{ kJ}$

Which statement is **NOT** true for this system?

- A $K_p = K_c$ at a stated temperature.
- B Addition of some H₂ to an equilibrium mixture will cause equilibrium to shift to the right.
- C Increasing the mass of Fe₂O₃ will cause equilibrium to shift to the right.
- D The value of K_p can be increased by increasing the temperature.
- E Decreasing the volume of the container does not upset equilibrium.

12. For the reaction $PCl_5(g) \rightleftharpoons PCl_3(g) + Cl_2(g)$, $K_p = 1.7$ at 298K. Five systems were set up with the initial partial pressure of each gas as shown in the table. In which system would the **forward** reaction occur to establish equilibrium?

	p _i PCl ₅ /atm	p _i PCl ₃ /atm	p_iCl_2/atm
A	1	2	1
В	2	2	2
C	1	1	2
D	2	2	3
Е	3	2	2

- 13. According to the Bronsted-Lowry definition, a base is a species which
 - A donates a hydrogen atom.
 - B donates a hydrogen ion.
 - C accepts a hydrogen atom.
 - D accepts a hydrogen ion.
 - E accepts a hydroxide ion.
- 14. Which does **NOT** constitute an acid/base conjugate pair?
 - A H₂CO₃/ HCO₃
 - B NH₃/ NH₂
 - C NH_4^+/NH_3
 - D H_3O^+/OH^-
 - E HNO_2/NO_2
- 15. Which is a weak acid?
 - A HI
 - B HClO₄
 - C HBr
 - D HF
 - E HC1
- 16. Which set shows the substances in order of **increasing** acid strength?
 - A HClO, HClO₂, HClO₃,
 - B H₂SO₄, H₂SO₃, HSO₄
 - C HCl, HBr, HF
 - D HF, H₂O, NH₃
 - E HPO₄²⁻, H₃PO₄, H₂PO₄⁻,

Chen	nistry 22	25 Final Examination 01-2009	Time allowed: 3 hours	Page 5 of 15		
Stude	ent Nam	ıe	.Student Number	Section		
17.	The a	The acidity constant for an acid, HA, is 2.5×10^{-5} . The pK _b of its conjugate base is closest to				
	A	4.6				
	В	9.4				
	C	4.0×10^{-10}				
	D	1.0×10^{-14}				
	E	14				
18.		Assuming all of the following solutions have the same molar concentration, which one would be expected to have the lowest pH?				
	A	FeCl ₃				
	В	FeCl ₂				
	C	$CaCl_2$				
	D	KCl				
	E	BaCl ₂				
Ques	tions 19	9-23 refer to the following titrat	ions:			
	A	The titration of 20.0 cm ³ of	0.1M HCl with 0.1 M NaOH			
	В	The titration of 20.0 cm ³ of 0	0.1M HCl with 0.1 M NH ₃			
	C	The titration of 20.0 cm ³ of 0	0.1M CH ₃ COOH with 0.1 M NaOH	I		
	D	The titration of 20.0 cm ³ of 0	0.1M KOH with 0.1 M HCl			
	E	The titration of 20.0 cm ³ of	0.1M HNO ₃ with 0.1 M KOH			
	For v	For which titration				
19.	woul	ld there be a decreases in pH as	the titrant is added?			
20.	woul	ld the pH be greater than 7 at th	e equivalence point?			
21.	would the pH be lower than 7 at the equivalence point?					
22.	would phenolphthalein (pH range 8.3 – 10.0) be unsuitable as an indicator?			tor?		
23.	woul	ld bromocresol green (pH range	3.8 - 5.4) be unsuitable as an indic	ator?		
 24.	In which compound does hydrogen carry an oxidation number of –1?					
	A	NH_4NO_3				
	В	LiH				

C

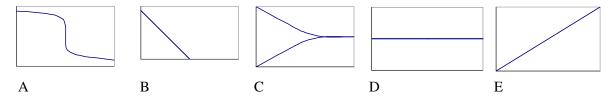
D

E

 H_2O_2

HF

NaHSO₄


Student Name.....Student Number....Section.....

- 25. In which compound does oxygen carry an oxidation number of -1?
 - A NaHSO₄
 - B NH₄NO₃
 - C H_2O_2
 - D Fe_2O_3
 - E FeO
- 26. In which compound does oxygen carry an oxidation number of +2?
 - A F_2O
 - B NH₄NO₃
 - C KHSO₄
 - D CuO
 - $E \qquad Cu_2O$
- 27. Which is **NOT** a redox reaction?
 - $A \hspace{1cm} Zn + \hspace{1cm} H_2SO_4 \hspace{1cm} \rightarrow \hspace{1cm} ZnSO_4 + H_2$
 - B $\text{Cu} + 2\text{H}_2\text{SO}_4 \rightarrow \text{CuSO}_4 + \text{SO}_2 + 2\text{H}_2\text{O}$
 - C $2NBr_3 + H_2O \rightarrow N_2 + 4Br^- + 2HOBr$
 - D $ZnCO_3 \rightarrow ZnO + CO_2$
 - E $XeF_2 + 2Cl^- \rightarrow Xe + 2F + Cl_2$
- 28. Which is a disproportionation reaction?
 - A $SO_2 + H_2O \rightarrow H_2SO_3$
 - B $CH_4 + 2O_2 \rightarrow CO_2 + 2 H_2O$
 - C $3 \text{ NO}_2 + \text{H}_2\text{O} \rightarrow 2 \text{ HNO}_3 + \text{NO}$
 - D $2 \text{ KMnO}_4 + 5 \text{ SO}_2 + 2 \text{ H}_2\text{O} \rightarrow 2 \text{ MnSO}_4 + \text{ K}_2\text{SO}_4 + 2 \text{ H}_2\text{SO}_4$
 - E $S_2O_8^{2-} + 2 \Gamma \rightarrow 2 SO_4^{2-} + I_2$
- 29. Which quantities are conserved in a redox reaction?
 - A Mass only.
 - B Charge only.
 - C Oxidation number.
 - D Neither mass nor charge.
 - E Both mass and charge.

- 30. The e.m.f. of the cell: Pt (s)| H_2 (g)|HCl (aq)|| CuSO₄ (aq)| Cu (s) does \underline{NOT} depend on
 - A temperature.
 - B the size of the copper electrode.
 - C the concentration of HCl.
 - D the concentration of CuSO₄.
 - E the pressure of H_2 .
- 31. When the contents of an electrochemical cell are at equilibrium, the e.m.f. of the cell
 - A is zero.
 - B is at a maximum.
 - C is negative.
 - D is positive.
 - E cannot be measured.

Questions 32 - 35 concern the following graphs:

Select, from A to E, the graph which best represents:

- 32. Rate of reaction versus concentration of X for a reaction which is zero order in X.
- 33. Rate of reaction versus concentration of X for a reaction which is first order in X.
- 34. Rate of reaction versus time for a reversible process which attains equilibrium after some time.
- 35. The titration curve for the titration of a base with an acid.

SECTION B: Answer **ALL** questions **in the spaces provided on the question paper**.

Remember to include units in your answers wherever appropriate.

1. The following data were obtained for the reaction: $6 \text{ I}^{-}(aq) + \text{BrO}_{3}^{-}(aq) + 6 \text{ H}^{+}(aq) \rightarrow 3 \text{ I}_{2}(aq) + \text{Br}^{-}(aq) + 3 \text{ H}_{2}O \text{ (l)}$

Experiment	Initial [I ⁻]/M	Initial [BrO ₃ -]/M	Initial [H ⁺]/M	Initial Rate of I ₂ formation/Ms ⁻¹
		. 31		
1	0.0020	0.0080	0.020	8.89×10^{-5}
2	0.0040	0.0080	0.020	1.78×10^{-4}
3	0.0020	0.0160	0.020	1.78×10^{-4}
4	0.0020	0.0080	0.040	3.56×10^{-4}

a) Derive the rate law for the reaction.

[3]

b) i) Use the data from experiment 1 to find the value of the rate constant, k, stating its correct units. [2]

ii) What would be the value of the <u>rate constant</u> if the concentration of all reactants were doubled?

c) What effect, if any, would doubling the concentration of the reactants have on the energy of activation for the process?

[1]

- 3. The first order rate constant for the decomposition of a certain hormone in water at 25° C is 0.0342 day^{-1} .
 - a) If a 0.0200 M solution of the hormone is stored for 40 days, what will be its concentration at the end of that period? [3]

Student Name.....Student Number.....Section.....

b) What is the half life of the hormone?

[2]

c) How many days will it take for a sample of the hormone to be 65% decomposed? [2]

4. Use the given K_p values for the processes X and Y to find K_p for the process Z. [2]

Process X:
$$2 \operatorname{BrF}(g) \Rightarrow \operatorname{Br}_2(g) + \operatorname{F}_2(g)$$

$$K_p = K_x = 4.57 \times 10^{-5}$$

Process Y:
$$Br_2(g) + 3 F_2(g) \Rightarrow 2 BrF_3(g)$$

$$K_p = K_y = 5.29$$

Process Z:
$$BrF_3(g) \Rightarrow BrF(g) + F_2(g)$$

$$K_p = K_z$$

Chen	nistry 22:	5 Final Examination 01-2009	Time allowed: 3 hours	Page 11 of 15	
Stude	ent Name	2	Student Number	Section	
5.	The e	quilibrium constant, K_p , for the RK. The reaction is: N_2O_4 (g)	e dissociation of dinitrogen tetroxic \rightleftharpoons 2 NO ₂ (g).	de to nitrogen dioxide is	s 11
	a)	Find the equilibrium partial 1.20 atm, dissociates at 398	pressure of each gas when $N_2O_{4,}$ a $8\ K.$	t an initial pressure of	[6]
	b)	Find the total pressure of the	e system at equilibrium.		[1]
	c)	Find the percent dissociation	n of dinitrogen tetroxide.	[[1]
6.	Eind 4	the pH of			
0.	r mu t	ше ри от			
	a)	0.020 M NaOH		[1	1]

Chemistry 225 Final Examination 01-2009	Time allowed: 3 hours	Page 12 of 15
Student Name	Student Number	Section
b) 0.020 M CH ₂ COOH		[5]

c) a mixture of 20.0 cm^3 of $0.020 \text{ M CH}_3\text{COOH} + 20.0 \text{ cm}^3$ of 0.020 M NaOH [7]

d) a mixture of 30.0 cm^3 of $0.020 \text{ M CH}_3\text{COOH} + 20.0 \text{ cm}^3$ of 0.020 M NaOH [5]

e) a mixture of 20.0 cm^3 of $0.020 \text{ M CH}_3\text{COOH} + 30.0 \text{ cm}^3$ of 0.020 M NaOH [4]

7. Derive a balanced **ionic** equation for the reaction by writing half equations and then combining them.

 $PbS(s) + NO_{3}(aq) \rightarrow S(s) + Pb^{2+}(aq) + NO(g) \text{ (in } \underline{acid} \text{ medium)}$ [4]

[1]

Student Name.....Student Number....Section.....

8. Use the following table of standard redox potentials wherever necessary.

	E°/V
$MnO_4^-(aq) + 8 H^+(aq) + 5 e^- \rightarrow Mn^{2+}(aq) + 4 H_2O(1)$	+1.51
$Cl_2(g) + 2e^- \rightarrow 2Cl^-(aq)$	+1.36
$Ag^{+}(aq) + e^{-} \rightarrow Ag(s)$	+0.80
$Fe^{3+}(aq) + e^{-} \rightarrow Fe^{2+}(aq)$	+0.77
$NiO_2(s) + 2 H_2O(l) + 2e^- \rightarrow Ni(OH)_2(s) + 2 OH^-(aq)$	+0.49
$Cu^{2+}(aq) + 2e^{-} \rightarrow Cu(s)$	+0.34
$2H^{+}(aq) + 2e^{-} \rightarrow H_{2}(g)$	0.00
$Ni^{2+}(aq) + 2e^{-} \rightarrow Ni(s)$	-0.25
$Fe^{3+}(aq) + 3e^{-} \rightarrow Fe(s)$	-0.036
$Cd^{2+}(aq) + 2e^{-} \rightarrow Cd(s)$	-0.40
$Fe^{2+}(aq) + 2e^{-} \rightarrow Fe(s)$	-0.44
$Cd(OH)_2(s) + 2e^- \rightarrow Cd(s) + 2OH^-(aq)$	-0.81
$Mg^{2+}(aq) + 2e^{-} \rightarrow Mg(s)$	-2.38

a) Rechargeable nickel-cadmium cells are used in calculators and other battery powered devices. The cell reaction is:

$$NiO_2(s) + Cd(s) + 2 H_2O(l) \rightarrow Ni(OH)_2(s) + Cd(OH)_2(s).$$

What is the cell potential of a standard nickel-cadmium cell?

b) The cell notation represents a **standard** galvanic cell:

$$Mg(s) \mid MgCl_2(aq) \parallel FeCl_3(aq), FeCl_2(aq) \mid Pt(s)$$

- i) Write a balanced **ionic** equation for the cell reaction. [1]
- ii) Draw a <u>fully labeled</u> diagram of the galvanic cell. Show the direction of flow of electrons, the polarity of the electrodes and the concentration of all solutions. [5]

c) i) Find the standard cell potential for a cell in which the reaction:

$$Ag^{+}(aq) + Fe^{2+}(aq) = Ag(s) + Fe^{3+}(aq)$$
 takes place. [1]

ii) Find
$$K_c$$
 for the process: $Ag^+(aq) + Fe^{2+}(aq) = Ag(s) + Fe^{3+}(aq)$ [4]

d) Find the e.m.f of the cell:
$$Cu(s) \mid Cu^{2+}(0.001 \text{ M}) \parallel Cu^{2+}(0.250 \text{ M}) \mid Cu(s)$$
 [4]

e) Explain why hydrochloric acid cannot be used to provide an acid medium with potassium manganate (VII) as an oxidizing agent. [2]