THE COLLEGE OF THE BAHAMAS

EXAMINATION

SEMESTER 01-2005

FACULTY OF PURE AND APPLIED SCIENCES

SCHOOL OF SCIENCES AND TECHNOLOGY

X NASSAU FREEPORT EXUMA ELEUTHERA

DATE AND TIME OF EXAMINATION: Tuesday, April 26, 2005 at 7 pm **DURATION: 3** HOURS

COURSE NUMBER:

CHEM 230

COURSE TITLE:

ORGANIC CHEMISTRY

STUDENT NAME:

STUDENT NUMBER:

LECTURER'S NAME:

INSTRUCTIONS TO CANDIDATES: This paper has 9 pages and 33 questions. Please follow instructions given.

Section A: Multiple Choice.

Answer <u>all</u> questions. For each question, select the best answer from the choices A to E, then shade the letter corresponding to this answer on the answer sheet provided. [25 marks]

Questions 1 and 2 concern the following molecules:

- 1. Which molecule has <u>all</u> of its carbon atoms sp² hybridized?
- 2. Which molecule contains at least one sp hybridized carbon atom?

3. The correct IUPAC name for the compound

$$H_3C$$
 CH_3
 CH_3
 CH_3

- A (E)-2-methy-4-hexene
- B (Z)-2-methy-4-hexene
- C (E)- 6-methyl-3-heptene
- D (Z)- 6-methyl-3-heptene
- E 3-octene
- 4. An alkene, X, produced ethanal as the only organic product of ozonolysis. Which is X?
- A $CH_2=CH_2$
- B CH₃CH₂CH=CH₂
- C CH₃CH=CHCH₃
- D $(CH_3)_2C=CH_2$
- E CH₃CH=CHCH₂CH₃

Student Name Student Number

Questions 5-9 refer to the following types of reaction:

- A Electrophilic addition
- B Nucleophilic addition
- C Electrophilic substitution
- D Nucleophilic substitution
- E Free radical substitution

Select from A to E the type of reaction which takes place when

- 5. phenol is chlorinated to p-chlorophenol
- 6. toluene is chlorinated to benzyl chloride
- 7. propene is chlorinated to 1,2-dichloropropane
- 8. propane is chlorinated to 2-chloropropane
- 9. chloroethane reacts with sodium ethoxide to form ethoxyethane

Questions 10-15 refer to the following types of reaction:

- A Redox
- B Elimination
- C Hydration
- D Condensation
- E Decarboxylation

Select, from A to E, the best classification for the formation of

- 10. cyclohexene from cyclohexanol
- 11. cyclohexanol from cyclohexene
- 12. benzoic acid from toluene
- 13. ethyl propanoate from ethanol and propanoic acid
- 14. propane-1,2-diol from propene
- 15. propanone from 2-propanol
- 16. Which group, when attached to the benzene ring, deactivates the ring towards electrophiles and directs incoming electrophiles to the ortho- and para- positions?
- А -ОН
- B -COOH
- C -NO₂
- D -Cl
- E -CH₃
- 17. Which reagent will **not** convert ethanol to chloroethane?
- A PCl₅
- B PCl₃
- C SOCl₂
- D HCl
- E Cl_2
- 18. Which functional group is not present in the compound shown below?

- A Ether
- B Ketone
- C Alcohol
- D Amide
- E Carboxylic acid

CH₃

Ē OH

Student Name Student Number

Questions 19-24. For each pair of structures given, decide whether the pair represents

A Constitutional isomers

B Enantiomers

C Diastereomers

D Identical molecules

E Resonance structures.

19.
$$H_3C$$
 E
 CH_3
 H_3C
 OH
 OH
 OH

20.
$$H_3C$$
 CH_3 H_3C CH_3 CH_3

21.
$$H_3C$$
 CH_3 H_3C CH_3 H_0 CH_3

H₃C

CI

H₃C

CI

25. Monosodium glutamate (MSG) is a flavor enhancer used in foods. (S)-MSG has a specific rotation of $+24^{\circ}$. Which mixture has a specific rotation of -12° ?

- A 50% (S)-MSG + 50% (R)-MSG
- B 75% (S)-MSG + 25% (R)-MSG
- C 25% (S)-MSG + 75% (R)-MSG
- D 80% (S)-MSG + 20% (R)-MSG
- E 20% (S)-MSG + 80% (R)-MSG

SECTION B: Answer <u>all</u> questions in the spaces provided in the question paper.

1. Name each compound, including stereochemical designations ((*E*), (*Z*), *cis*, *trans*, (*R*), (*S*)) where appropriate. [4]

a)
$$H_3C$$
 OH CH_3

- 2. Draw the structure for each compound, showing stereochemical designations where applicable. [3]
 - a) (2R,3S)-2-hydroxy-3-chlorobutanoic acid.

- **b**) 2-chloro-3-nitrophenol
- c) (E)-1,2-dibromo-3-methylhex-2-ene

In each case, state the reagent(s) and conditions required to bring about the $\underline{one\ step}$ 3. [4] conversion.

b)
$$H_3C$$
 CH_3 H_3C CH_3

c)
$$H_3C$$
 CH_3 CH_3

4. Give the structure of the <u>major</u> product formed in each case. Show stereochemical designation where appropriate. [4]

b)
$$H_3C$$
 H
 H_3C
 H
 H
 CH_3

^{5.} When toluene (C₆H₅CH₃) reacts with chlorine in the presence of ultra-violet light, it does so in a similar fashion to methane, under the same conditions, to produce benzyl chloride (C₆H₅CH₂Cl). Propose a mechanism for the reaction. [4]

Chemistry 230	Final	Examination	01-2005
---------------	-------	-------------	---------

Student Name	Student Number	
Student Ivanie	Student Number	**************

6. a) When toluene (C₆H₅CH₃) reacts with chlorine in the presence FeCl₃, the major product is 2-chlorotoluene. Propose a mechanism for the reaction. [4]

b) Explain why 2-chlorotoluene is produced in greater abundance than 4-chlorotoluene even though the –CH₃ group is *ortho-para* directing. [1]

c) Explain why 2-chlorotoluene is produced in <u>much greater</u> abundance than 3-chlorotoluene. [3]

Chemistry	230	Final	Examination	01-2005
CHOMING y	<i>~~</i>	T TITUL	LAMIMMUON	01-2003

Page 8 of 9

C. 1 3.7	C 1 1 1 1	
Student Name	Student Number	
Student Name	Diddent Number	

- 7. Give an explanation for each of the following observations. You need to propose mechanisms for reactions and refer to the proposed mechanisms in your explanations.
 - a) When (CH₃)₃C-CH(Cl)-CH₃ undergoes an E1 reaction with CH₃OH, the main product of the reaction is 2,3-dimethylbut-2-ene, rather than 3,3-dimethylbut-1-ene. [5]

c) The reaction of (2R)-2-bromobutane with sodium methoxide produces only (2S)-2-methoxybutane, whereas the reaction with methanol produces a racemic mixture of 2-methoxybutane. [7]

8. Give a reaction scheme, including reagents, for the following conversions. Each scheme must involve more than one step. [6]

a) to
$$CH_3$$

b)
$$H_3C$$
 OH to H_3C CH_3