			AMINATION HEMISTRY II	SEMESTER 9804	
Stude	nt Number	Si	tudent Name	Secti	on
Each of	FION A: Multiple Cl question is followed l ponding to this answ	by five sugge	ested answers. So	rks]. Answer ALL questicelect the best answer and shaded.	ons. ade the letter
1. A B C D E	The reaction NO ₂ = The rate law for this R = k[NO][CO] $R = k[NO]^2[CO]$ $R = k[NO]^2$ $R = k[NO]^2$ R = k[CO]		CO ₂ + NO is seco	ond order in NO and zero or	rder in CO.
2. A B C D E	The energy of active increasing the temp decreasing the condecreasing the total increasing the total using a suitable catalog.	erature. centrations of volume of the volume	f the reactants. he reacting mixt	ure.	
3.	The rate law for the reaction $2H_2(g) + 2NO(g) \rightarrow 2H_2O(g) + N_2(g)$ is $R = k[H_2][NO]^2$. The rate of formation of nitrogen in a particular experiment was 0.002Ms^{-1} . What would be the rate of formation of nitrogen, in Ms ⁻¹ , if the concentration of hydrogen is halved and that of nitrogen monoxide is doubled?				
A B C D	0.002 0.004 0.008 0.012 0.016				
4.	The following mech Step a $NO_2(g) + 1$ Step b $NO_2(g) + 1$ Which statement is	$F_2(g) \rightarrow F(g) \rightarrow$	$NO_2F(g) + F(g)$ $NO_2F(g)$		
A B C D	The overall reaction F is a reaction inter The reaction is bime The energy of active The rate law for the	n is 2NO ₂ (g) mediate. olecular and ation for step	$+ F_2(g) \rightarrow 2N$ second order. p a is higher than	$NO_2F(g)$ In that for step b.	

- 5. The following elementary steps have been proposed for a reaction.
 - a) $2\text{Co}^{2+} + \text{H}_2\text{O} + \text{OCI} \rightarrow 2\text{Co}^{3+} + 2\text{OH} + \text{CI}$
 - b) $2\text{Co}^{3+} + 2\text{OH}$ \rightarrow $2\text{Co}^{2+} + \text{H}_2\text{O} + \frac{1}{2}\text{O}_2$

The catalyst in this process is

- $A \quad Co^{2+}$
- B Co³⁺
- C CI
- D OCI
- E OH
- 6. In the energy profile diagram

- A The forward reaction is exothermic.
- B The activation energy for the forward process is P.
- C The activation energy for the forward process is R.
- D The activation energy for the forward process is P-R.
- E The activation energy for the forward process is P+R.
- 7. In the Arrhenius equation $k = Ae^{-Ea/RT}$, $e^{-Ea/RT}$ represents
- A the activation energy.
- B the collision frequency.
- C the fraction of molecules colliding with favourable orientation.
- D the fraction of molecules with the necessary energy of activation.
- E the number of molecules with the necessary energy of activation.

Questions 8 and 9 concern the following information:

The gas phase decomposition of N_2O_5 is first order with a rate constant of 1.5×10^{-4} at 55° C. The initial concentration of N_2O_5 is 1.0M.

- 8. After 20s, the $\Delta [N_2O_5]$ is
- A -0.0015M
- B -0.003 M
- +0.0015M
- D +0.003M
- E +1.003M
- 9. After 20s, the $[N_2O_5]$ is
- A 0.0015M
- B 0.007M
- C 0.003M
- D 1.003M
- E 1.007M
- 10. An inhibitor halves the rate of a reaction when its concentration is doubled. The order of the reaction with respect to this inhibitor is
- A 1/2
- B 1
- C -1
- D 2
- E -2

11. The graph shown best represents

- A Reaction rate versus concentration of Y for a reaction which is zero order in Y.
- B Reaction rate versus concentration of Y for a reaction which is first order in Y.
- C Reaction rate versus concentration of Y for a reaction which is second order in Y.
- D Reaction rate versus time for a reversible process which attains equilibrium.
- E Concentration of reactant versus time for a reaction which goes to completion.
- 12. The equilibrium constant for the reaction $X \rightleftharpoons Y$ is $7.5x10^6$. Which of the following statements is TRUE?
- A The equilibrium concentration of X is greater than that of Y.
- B The equilibrium concentration of Y is greater than that of X.
- C Adding a suitable catalyst will increase the equilibrium concentration of X.
- D Adding a catalyst will increase the value of the equilibrium constant.
- E Adding more X will increase the value of the equilibrium constant.
- 13. Which of the following CANNOT upset the system $CaCO_3(s) \rightleftharpoons CaO(s) + CO_2(g)$ at equilibrium?
- A Increasing the mass of calcium oxide.
- B Increasing the temperature.
- C Decreasing the temperature.
- D Increasing the volume of the containing vessel.
- E Increasing the pressure.
- 14. Consider the process $C_2H_6(g) \iff C_2H_4(g) + H_2(g) \quad \Delta H = +137kJ$ at equilibrium. The value of K_c can be increased by
- A Increasing the concentration of C₂H₆.
- B Adding some H_2 to the equilibrium mixture.
- C Using a suitable catalyst.
- D Reducing the volume of the container.
- E Decreasing the temperature.
- 15. 0.12 mol of SO₂ and 0.10 mol of O₂ were introduced into a 2dm³ vessel at constant temperature. When the system reached equilibrium, 0.08mol of SO₃ was present. The reaction is 2SO₂(g) + O₂(g) ⇒ 2SO₃(g).

Which set of values shows the concentration of each gas at equilibrium?

	[SO ₂]/moldm ⁻³	[O ₂]/moldm ⁻³	[SO ₃]/moldm
Α	0.02	0.03	0.04
В	0.02	0.01	0.04
C	0.04	0.06	0.08
D	0.04	0.02	0.08
E	0.08	0.06	0.08

16.	At a given temperature, T, some PCl ₅ , at an initial concentration of 1.0M, was placed in a
	container and allowed to reach equilibrium. It was found that the PCl ₅ was 20% dissociated
	into PCl ₃ and Cl ₂ at equilibrium. K_c for the process $PCl_3(g) \rightleftharpoons PCl_3(g) + Cl_2(g)$
	at temperature, T, is

- A 0.20
- B 0.025
- C 0.05
- D 3.20
- E 4.0
- 17. When the system $NH_4CONH_2(s)$ \longrightarrow $2NH_3(g) + CO(g)$ is at equilibrium at 298K, the total pressure is 0.114atm. K_p for the system is
- A 0.038
- B 0.076
- C 1.48x10⁻³
- D $3.51x10^{-3}$
- E 2.19x10⁻⁴
- 18. For the reaction $PCl_5(g) \rightleftharpoons PCl_3(g) + Cl_2(g)$, $K_p = 1.7$ at 298K. Five systems were set up with the initial partial pressure of each gas as shown in the table. In which system would the reverse reaction occur to establish equilibrium?

Initial partial pressure/atm

	PCl_5	PCl_3	Cl_2
A	1	1	1
В	2	2	2
C	1	0.5	1.5
D	2	2	1
E	3	2	2

- 19. According to the Bronsted-Lowry definition, an acid is a substance which donates a
- A hydrogen atom.
- B hydrogen ion.
- C hydrogen molecule.
- D hydride ion.
- E hydroxide ion.
- 20. Which does NOT constitute an acid/base conjugate pair?
- A NH_4^+/NH_2^-
- B NH₃/ NH₂
- C NH_4^+/NH_3
- D HNO₃/NO₃
- E HNO₂/NO₂
- 21. The acidity constant for an acid, HA, is 2.5 x 10⁻⁶. The pK_b of its conjugate base is
- A 5.6
- B 8.4
- C 1.79×10^{-5}
- D 1.0 x 10⁻¹⁴
- E 14
- 22. Which salt would produce a solution with the lowest pH? Assume all solutions have the same molar concentration.
- A KC1
- B MgCl₂
- C FeCl₃
- D FeCl₂
- E BaCl₂

- 23. Which salt would produce a solution with the highest pH? Assume all salts have the same molar concentration.
- A KC1
- B KClO
- C KClO₂
- D KClO₃
- E KClO₄
- 24. Which statement is true of any acid/base indicator?
- A It is neither an acid nor a base.
- B It always changes colour at pH 7.
- C It always changes colour at a pH above 7.
- D It always changes colour at a pH below 7.
- E It is at the mid point of its colour change when pH = pK of the indicator.

Questions 25 to 29. The diagrams represent titration curves for the reaction between various acids and bases.

Select, from A to E, the curve which best represents the titration of

- 25. 20 cm³ of 0.1 M nitric acid with 0.1 M potassium hydroxide.
- 26. 20 cm³ of 0.1 M potassium hydroxide with 0.1 M ethanoic acid.
- 27. 20 cm³ of 0.1 M nitric acid with 0.1 M ammonia.
- 28. 20 cm³ of 0.1 M ammonia with 0.1 M ethanoic acid.
- 29. 20 cm³ of 0.1 M ethanoic acid with 0.1 M potassium hydroxide.
- 30. The solubility of silver chloride (AgCl) is 1.41x10⁻⁵moldm⁻³. The solubility product of this compound is
- A 2.82×10^{-5}
- B 1.99×10^{-5}
- C 1.99×10^{-10}
- D 0.70×10^{-5}
- E 2.82×10^{-10}

Questions 31 and 32 require the following information: The solubility product of PbI_2 is 7.9 x 10⁻⁹.

- The solubility of PbI₂ in water is, in moldm⁻³, 31.
- 1.25×10^{-3} Α
- 1.99×10^{-3} В
- 8.89 x 10⁻⁵ \mathbf{C}
- 1.98 x 10⁻⁹ D
- 3.95 x 10⁻⁹ E
- The solubility of PbI₂ in 0.10M NaI is, in moldm⁻³, 32.
- 7.9 x 10⁻¹¹ Α
- 7.9 x 10⁻¹⁰ \mathbf{B}
- 7.9 x 10⁻⁹ \mathbf{C}
- 7.9×10^{-8} \mathbf{D}
- 7.9×10^{-7} E

Questions 33 and 34 concern the following equations.

- Α $N_2 + 3H_2$ 2NH₃
- $Cu + CuCl_2 \rightarrow$ 2CuCl \mathbf{B}
- C $Zn + 2HC1 \rightarrow$ $ZnCl_2 + H_2$
- $Cu(NH_3)^{2+}$ $Cu^{2+} + 2NH_3$ \rightarrow D
- FeSO₄ + Cu E $Fe + CuSO_4 \rightarrow$
- Which is NOT a redox reaction? 33.
- Which is a disproportionation reaction? 34.
- Which set shows sulphur in order of INCREASING oxidation number? 35.
- HS^{-} , H_2SO_4 , SO_2 . A
- В S, H₂S, SO₂.
- H_2S , HSO_3 , HSO_4 . HSO_4 , SO_3^2 , SC
- D
- SO₃, SO₂, S E
- Which statement is FALSE for a voltaic cell? 36.
- The current consists of a flow of electrons in the external circuit and a flow of ions A through the electrolyte.
- Cations migrate towards the cathode. В
- The cathode is positively charged. C
- Oxidation occurs at the cathode. D
- A redox reaction takes place in the cell. E

Questions 37 to 40 refer to the following diagram of a cell.

Some standard electrode potentials are:-

		E'/V
$Ag^+ + e^- \rightarrow$	Ag	+0.80
$Cu^{2+} + 2e^{-} \rightarrow$	Cu	+0.34
$Zn^{2+} + 2e^{-} \rightarrow$	Zn	-0.76
$Mg^{2+} + 2e^{-} \rightarrow$	Mg	- 2.36

Changes can be made to the cell with the following possible results.

	e.m.f of cell	Direction of flow of electrons
A	Increased	unchanged
В	Increased	reversed
C	Unchanged	unchanged
D	Decreased	unchanged
E	Decreased	reversed

Select, from A to E, the change which would occur when

- 37. the silver electrode is replaced by a copper electrode in 1M Cu²⁺.
- 38. the zinc electrode is replaced by a magnesium electrode in 1M Mg²⁺.
- 39. the zinc electrode is replaced by a copper electrode in 1M Cu²⁺.
- 40. the silver electrode is replaced by a silver electrode of greater surface area.

SECTION B: Answer ALL questions in the spaces provided in the question paper.

- 1. The rate law for the reaction $P + Q \rightarrow \text{products}$ is $R = k[P][Q]^2$ with a rate constant of $1.2 \times 10^{-5} \text{M}^{-2} \text{s}^{-1}$.
 - a] Find the rate of the reaction the instant 20.0cm³ of 0.25M P is mixed with 30.0cm³ of 0.15M Q. [2 marks]

b] What is the value of the rate constant if the concentration of P is doubled and the concentration of Q is kept constant? [1mark]

- 2. a] Write an expression for K_w , the ionic product of water. [1 mark]
 - b](i) Given the value of K_w is 1.0x10⁻¹⁴ at 25^oC and 51.3x10⁻¹⁴ at 100^oC, state whether the ionisation of water is an endothermic or an exothermic process. Justify your answer. [1 mark]
 - (ii) Explain why pure boiling water ,at 1 atm pressure, has a pH of 6.1. [2 marks]
- 3. Use the following information wherever necessary.

$$K_w = 1.0 \times 10^{-14}$$

 $K_a(HCOOH) = 1.8 \times 10^{-4}$
 $K_a(HIO_3) = 1.7 \times 10^{-1}$
 $K_b NH_3) = 1.8 \times 10^{-5}$

Find the pH of the following solutions:

- a] 0.01M hydrochloric acid (HCl) which is a strong acid. [1 mark]
- b] 0.01M methanoic acid (HCOOH) which is a weak acid. [3 marks]

c] 0.01M iodic(v) acid (HIO₃) which is a moderately strong acid. [3 marks]

d]	0.01M sodium hydroxide (NaOH) which is a strong base.	[1 mark]
e]	0.01M ammonia (NH ₃) which is a weak base.	[3 marks]
f]	A mixture prepared by mixing 30.0cm ³ of 0.01M HCl with 30.0cm ³	of 0.01M NaOH. [2 marks]
g]	A mixture prepared by mixing 30.0cm ³ of 0.01M HCl with 20.0cm ³	of 0.01M NaOH. [3 marks]
h]	A mixture prepared by mixing 20.0cm ³ of 0.01M HCl with 20.0cm ³	of 0.01M NH ₃ . [4 marks]
i]	A mixture prepared by mixing 30.0cm ³ of 0.01M HCOOH with 20.0 NaOH.	Ocm ³ of 0.01M [4 marks]

4. Use the following table of standard redox potentials wherever necessary.

	E°/V
$Cl_2 + 2e^- \rightarrow 2Cl^-$	+1.36
$Fe^{3+} + e^{-} \rightarrow Fe^{2+}$	+0.77
$2H^+ + 2e^- \rightarrow H_2$	0.00
$Fe^{2+} + 2e^{-} \rightarrow Fe$	-0.44

- a] Write a cell notation for the cell represented by the diagram shown.[2 marks]
- b] Label the cathode and the anode on the diagram. [1 mark]
- c] Find the cell potential. [1 mark]
- d] Write an equation for the cell reaction. [2 marks]
- e] State two functions of the salt bridge. [2 marks]
- f] i) Justify the assumption that a reaction between hydrogen gas and iron(111) nitrate is thermodynamically feasible. [1 mark]
 - ii) How can you explain the fact that no observable reaction takes place when hydrogen gas is bubbled through iron(111) nitrate solution at room temperature? [2 marks]

a] Sulphur(IV) oxide, SO₂, gas can be identified by its ability to decolourise acidified purple potassium manganate(VII), KMnO₄, solution. In this reaction sulphate(VI) ions, SO₄², and Mn²⁺ ions are formed. Write a balanced ionic equation for this reaction by the half cell method.

[4 marks]

b] The nitrate(V) ion ,NO₃, can be identified by the evolution of ammonia gas,NH₃, when powdered aluminium(Al) is added to an alkaline solution of a nitrate. The aluminium metal forms the complex ion Al(OH)₄ in this reaction. Write a balanced ionic equation for this reaction by the half cell method. [4 marks]

END OF EXAMINATION