```
Student Name ...... Student number ...... Section ......
 You may use the following information wherever necessary:
R=8.31~J~mol^{-1}~K^{-1}=0.0821~atm~dm^3~mol^{-1}~K^{-1}=0.0821~atm~L~mol^{-1}~K^{-1}~K_p=K_c~(0.0821T)^{an(gas)}~K_w=1.0~x~10^{-14}~at~298~K
 SECTION A: Multiple Choice . Answer all questions.
                                                                          [1 mark each = 30 marks]
Each question is followed by five suggested answers. Select the best answer and shade the letter corresponding to this answer on the answer sheet provided.
 1.
            In which compound does hydrogen carry an oxidation number of -1?
 Α
 В
            NaH
 С
           H_2O_2
D
            KHCO<sub>3</sub>
Е
           HBr
2.
           Which is NOT a redox reaction?
           Zn + H_2SO_4 \rightarrow ZnSO_4 + H_2
 В
           Cu + 2H_2SO_4 \rightarrow CuSO_4 + SO_2 + 2H_2O
 C
           MgCO_3 \rightarrow MgO + CO_2
D
           I_2 + S_2O_3^{2-} \rightarrow 2 \Gamma + S_4O_6^{2-}
Е
           XeF_2 + 2CI \rightarrow Xe + 2F + Cl_2
3.
            Which is a disproportionation reaction?
           3 \text{ NO}_2 + \text{H}_2\text{O} \rightarrow 2 \text{ HNO}_3 + \text{NO}
           CH_4 + 2O_2 \rightarrow CO_2 + 2 H_2O
В
C
           SO_2 + H_2O \rightarrow H_2SO_3
D
           2 \text{ KMnO}_4 + 5 \text{ SO}_2 + 2 \text{ H}_2\text{O} \rightarrow 2 \text{ MnSO}_4 + \text{ K}_2\text{SO}_4 + 2 \text{ H}_2\text{SO}_4
Ε
           S_2O_8^{2^-} + 2I^- \rightarrow 2SO_4^{2^-} + I_2
4.
            Which set shows sulphur in order of INCREASING oxidation number?
           HS, H2SO4, SO2
Α
           S, H<sub>2</sub>S, SO<sub>2</sub>
C
           H<sub>2</sub>S, SO<sub>2</sub>, SO<sub>3</sub>
D
           HSO<sub>4</sub>, SO<sub>3</sub><sup>2</sup>, S
Ε
           SO<sub>3</sub>, SO<sub>2</sub>, S
5.
           Ammonia can be oxidized according to the equation:
           4 \text{ NH}_3(g) + 5 \text{ O}_2(g) \rightarrow 4 \text{ NO}(g) + 6 \text{ H}_2\text{O}(g)
           If in a particular reaction the \Delta[NO] is -0.006 mol dm<sup>-3</sup>, then \Delta[O<sub>2</sub>], in mol dm<sup>-3</sup>, is
Α
           -5/4 \times 0.006
           5/4 x 0.006
В
           -4/5 x 0.006
\mathbf{C}
Ď
           4/5 \times 0.006
E
           4 x 5 x 0.006
6.
           The reaction: 2 H_2(g) + 2 NO (g) \rightarrow 2 H_2O(g) + N_2(g) is first order in hydrogen and second
           order in nitrogen monoxide.
           By what factor would the rate of the reaction change if the concentration of both reactants were
           doubled?
В
C
D
           12
Ε
7.
           The energy of activation for a process can be decreased by
A
           increasing the temperature of the reaction mixture.
В
           increasing the concentrations of the reactants.
C
D
           decreasing the total volume of the reacting mixture.
           increasing the total volume of the reacting mixture.
Е
           using a suitable catalyst.
```

Chemistry 225 Final Examination Semester 01-2004

Page 1 of 10

Student Name Student number Section

8. The following data were obtained for the reaction:

$$6 I^{-}(aq) + BrO_{3}^{-}(aq) + 6 H^{+}(aq) \rightarrow 3 I_{2}(aq) + Br^{-}(aq) + 3 H_{2}O(l)$$

Experiment	Initial [I ⁻]/M	Initial [BrO ₃ -]/M	Initial [H ⁺]/M	Initial Rate of I ₂ formation/Ms ⁻¹
1	0.0020	0.0080	0.020	8.89 x 10 ⁻⁵
2	0.0040	0.0080	0.020	1.78 x 10 ⁻⁴
3	0.0020	0.0160	0.020	1.78 x 10 ⁻⁴
4	0.0020	0.0080	0.040	3.56 x 10 ⁻⁴

The rate law for the reaction is

- $R = k [I^{-}]^{2} [BrO_{3}^{-}]^{2} [H^{+}]$
- В $R = k [I] [BrO_3] [H^+]$
- C
- D
- R = k [I] [BrO₃]² [H⁺] R = k [I]² [BrO₃] [H⁺] R = k [I] [BrO₃] [H⁺]² Ε
- 9. The following mechanism has been proposed for a reaction.

Step (i)
$$NO_2(g) + F_2(g) \rightarrow NO_2F(g) + F(g)$$
 slow

Step (ii)
$$NO_2(g) + F(g) \rightarrow NO_2F(g)$$

Which statement is **NOT** consistent with this proposed mechanism?

- The overall reaction is 2 NO₂ (g) + F_2 (g) \rightarrow 2 NO₂F (g) Α
- F is a reaction intermediate.
- B C D E Each elementary step is bimolecular.
- The energy of activation for step (i) is lower than that for step (ii).
- The rate law for the reaction is $R = k[NO_2][F_2]$
- 10. The following elementary steps have been proposed for a reaction.

Step (i)
$$H_2O_2 + I^- \rightarrow H_2O + IO^-$$

Step (ii)
$$H_2O_2 + IO^- \rightarrow H_2O + O_2 + I^-$$

The catalyst in this process is

- H_2O_2
- В
- O₂ IO C D
- H_2O
- E
- Nitrogen and hydrogen combine reversibly to form ammonia according to the equation:

$$N_2(g) + 3 H_2(g) \rightleftharpoons 2 NH_3(g)$$
.

0.20 mol each of N2 and H2 were introduced into a 1 dm3 vessel at constant temperature. When the system reached equilibrium, 0.10 mol of NH₃ was present.

Which set of values shows the concentration of each gas at equilibrium?

	[N ₂]/moldm ⁻³	[H ₂]/moldm ⁻³	[NH ₃]/moldm ⁻³
A	0.20	0.20	0.10
В	0.15	0.05	0.10
С	0.10	0.05	0.10
D	0.05	0.10	0.10
E	0.15	0.10	0.10

12. At a given temperature, T, some PCl₅ at an initial concentration of 1.0 M, was placed in a container and allowed to reach equilibrium. It was found that the PCl₅ was 20% dissociated into PCl3 and Cl2 at equilibrium.

 K_c for the process: $PCl_5(g) \rightleftharpoons PCl_3(g) + Cl_2(g)$ at temperature, T, is

- 0.20
- В 0.025
- 0.05
- D 3.20
- 4.0

Student Name Student number Section

- $A K_c = \frac{[CO_2]}{[O_2]}$
- $\mathbf{B} \qquad \mathbf{K_p} = \mathbf{K_c}.$
- C Equilibrium position lies far to the right.
- D When carbon and oxygen react, the limiting reagent is almost completely used up.
- E The rate of the reaction between carbon and oxygen to form carbon dioxide is extremely fast.
- 14. K_p for the gas phase reaction: $Br_2 + 3 F_2 \Rightarrow 2 BrF_3$ is 5.29.

 K_p for the gas phase reaction: $BrF_3 \rightleftharpoons \frac{1}{2} Br_2 + \frac{1}{2} F_2$ is

- $A \qquad \left(\frac{1}{5.29}\right)^{1/2}$
- $B \qquad \left(\frac{1}{5.29}\right)^2$
- $(529)^{1/2}$
- D $\left(\frac{1}{5.29}\right)$
- E $(529)^2$
- 15. Consider the process $2 \text{ SO}_3(g) \rightleftharpoons 2 \text{ SO}_2(g) + \text{O}_2(g)$ $\Delta \text{ H}$ = + 198 kJ. The value of K_c for this process can be increased by
- A using a suitable catalyst.
- B adding some SO₃ to an equilibrium mixture at constant volume.
- C increasing the total volume of an equilibrium mixture.
- D increasing the temperature.
- E decreasing the temperature.
- 16. K_p for the system : $NH_4CO_2NH_2(s) \rightleftharpoons 2$ $NH_3(g) + CO_2(g)$ is 2.2 \times 10⁻⁴ at 298K. The partial pressure of carbon dioxide in an equilibrium mixture at 298 K is closest to
- A 0.038 atm
- B 0.076 atm
- C 0.114 atm
- D 7.3 x 10⁻⁵ atm
- E 1.05 x 10⁻² atm
- 17. Which change **CANNOT** upset equilibrium position of the system:

 $NH_4CO_2NH_2(s) \rightleftharpoons 2 NH_3(g) + CO_2(g)$?

- A Increasing the mass of solid NH₄CO₂NH₂.
- B Increasing the temperature.
- C Decreasing the temperature.
- D Increasing the volume of the containing vessel.
- E Increasing the mass of NH₃ gas without changing the volume of the container.
- 18. For the reaction $PCl_5(g) \rightleftharpoons PCl_3(g) + Cl_2(g)$, $K_p = 1.7$ at 298K. Five systems were set up with the initial partial pressure of each gas as shown in the table. In which system would the <u>**REVERSE**</u> reaction occur to establish equilibrium?

		Initial partial pressure/atm	
	PCl ₅	PCl ₃	Cl ₂
A	1	1	i
В	2	2	2
С	1	0.5	1.5
D	2	2	1
Е	3	2	2

- 19. According to the Bronsted-Lowry definition, an acid is a substance which donates a
- A hydrogen atom.
- B hydrogen ion.
- C hydrogen molecule.
- D hydride ion.
- E hydroxide ion.

Chem	istry 225 Final Examination Semester 01-2004 Page 4 of 10
Stude	nt Name
20.	Which does NOT constitute an acid/base conjugate pair?
Α	H ₂ SO ₄ / HSO ₄ ⁻
В	NH ₃ /NH ₂
C	NH ₄ ⁺ /NH ₃
D E	H ₃ O ⁺ / OH ⁻ HNO ₃ / NO ₃ -
ь	111403/1403
21.	Which is NOT a strong acid?
A	HCI
В	HClO ₄
C	HNO ₃
D E	HNO ₂ HI
L	
22.	Which set shows the substances in order of INCREASING acid strength?
Α	HBr, HCl, HF
В	HF, H ₂ O, NH ₃
C	HClO ₄ , HClO ₃ , HClO ₂
D	H ₂ SO ₄ , H ₂ SO ₃ , HSO ₄ HPO ₄ H ₂ PO ₄ H ₂ PO ₄
E	HPO_4 , H_2PO_4 , H_3PO_4
23.	The acidity constant for an acid, HA, is 3.5×10^{-5} . The pK _b of its conjugate base is
Α	4.5
В	9.5
C	14
D	1.0 x 10 ⁻¹⁴
Е	2.9×10^{-10}
24.	Which salt would be expected to produce a solution with the <u>LOWEST</u> pH? Assume all solutions have the same molar concentration.
Α	NaCl
В	MgCl ₂
č	FeCl ₃
D	FeCl ₂
E	$BaCl_2$
25	William and the second
25.	Which statement is usually true of an acid/base indicator?
A B	It is neither an acid nor a base. It always changes colour at pH 7.
C	It always changes colour at pri 7. It always changes colour at a pH above 7.
Ď	It always changes colour at a pH above 7. It always changes colour at a pH below 7.
E	It is at the mid point of its colour change when pH = pK of the indicator.
	1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Questio	ons 26 to 30 refer to the following solutions.
	1x10 ⁻⁴ M HClO₄
A B	1x10 M HCIO ₄ 1x10 M NaQCl
C	1x10 M Nacci 1x10 ⁴ M FeCl ₃
D	1x10 M PeCi ₃ 1x10 ⁴ M NaCl
E	1x10 ⁻⁴ M NaOH
	rom A to E,
26.	The solution which would have a pH closest to 4.
20. 27.	The solution which would have a pH closest to 4. The solution which would have a pH closest to 7.
28.	The solution which would have a pH closest to 7. The solution which would have a pH closest to 10.
29.	The solution which would have a pH between 4 and 7.
30.	The solution which would have a pH between 7 and 10.

Chemi	stry 22:	5 Final	Examination Semester 0	1-2004	Page 5 of 10
Studer	nt Name	·	S	Student number	Section
SECTION	<u>ON B</u> : A	nswer <u>A</u> l	LL questions in the spaces pr	ovided on the question pa	per.
You ma	y use the	followin	g information wherever appro	priate:	
a)	R = 8.3	1 J mol ⁻¹	$K^{-1} = 0.0821 \text{ atm dm}^3 \text{ mol}^{-1} K$	$= 0.0821 \text{ atm L mol}^{-1} \text{ K}$	-1
b)	$k = Ae^{-}$	Ea/RT			
c)	$\ln\frac{k_2}{k_1} =$	$=\frac{E_a}{R}$ x	$\frac{(T_2 - T_1)}{T_1 T_2}$		
d)	$ \ln \frac{[A]}{[A]} $	$\frac{t}{t} = -kt$			
e)	,	$\frac{12}{k} = \frac{0.0}{12}$			
f)	$K_p = K_c$	(0.0821	Γ) ^{Δn(gas)}		
g)	$K_w = 1.0$	0 x 10 ⁻¹⁴	at 298 K		
h)	K _a (NH.	₄ ⁺) = 6.3	x 10 ⁻¹⁰		
i)		$\frac{0 \pm \sqrt{b^2}}{2a}$			
			its in your answers whereve		
1.			$ClO_2(aq) + 2 OH'(aq) \rightarrow 0$ d second order in ClO_2 .	$ClO_3^-(aq) + ClO_2^-(aq) + H_2$	O(l) is first
	a)	Write a	rate law for the reaction.		[1]
	b)	and ClC	periment carried out at a fixed by were 0.015 mol dm ⁻³ and 0.0 of hydroxide consumption wa	010 mol dm ⁻³ respectively.	ncentrations of OH, It was found that
		i)	Find the value of the rate cor	istant, k, stating its correct u	<u>units</u> . [2]
		ii)	What would be the value of t reactants were doubled?	he <u>rate constant</u> if the con	centration of both
		iii)	What effect, if any, would do the energy of activation for the	subling the concentration of ne process?	f the reactants have on
		iv)	What effect, if any, would inchave on the energy of activat		the reaction mixture

vi) What effect, if any, would using a catalyst have on the energy of activation for the process?

[1]

[1]

		25 Final Examination Semester 01-2004 Page 6 of me Student number Section	
2.	The d	lecomposition of sulfuryl chloride(SO ₂ Cl ₂) to sulfur dioxide and chlorine is a firs 0 min.	t order process with a half life
	a)	What is the rate constant for the reaction? (Remember to state its units.)	
	b)	How long will it take for the concentration of a sample of sulfuryl chloride to	be reduced by 35% ?
	c)	On the axes given, sketch graphs of i) concentration of SO ₂ Cl ₂ versus time. ii) rate of decomposition of SO ₂ Cl ₂ versus concentration of SO ₂ Cl ₂ Be sure to label your axes.	[3]
		i) ii)	
3.	surfac	ogen iodide (HI) undergoes zero order decomposition into hydrogen and iodine one. e axes given, sketch graphs of a) concentration of HI versus time. b) reaction rate versus concentration of HI. Be sure to label your axes.	n a gold
	a)	b)	

4. The activation energy for the reaction: $2\ N_2O\ (g) \rightarrow 2\ N_2\ (g) + O_2\ (g)$ is $200\ kJ\ mol^{-1}$. How much faster would this reaction proceed at $230^{0}C$ than at $200^{0}C$?

Chem	istry 22	25 Final Examination Semester 01-2004 Page 7 of 10	
Stude	nt Nam	eStudent numberSection	
5.	The equilibrium constant, K_p , for the dissociation of dinitrogen tetroxide to nitrogen dioxide is 11 at 398K. The reaction is: $N_2O_4(g) \Rightarrow 2 NO_2(g)$.		
	a)	Find the equilibrium partial pressure of each gas when N_2O_4 at an initial pressure of 1.00 atm dissociates at 398 K.	
		not ann dissociates at 570 K.	[4]
	a)	Find the total processor of the state of the	
	c)	Find the total pressure of the system at equilibrium.	[1]
	d)	Find the percent dissociation of dinitrogen tetroxide.	[1]
	e)	What effect, if any, will the addition of 0.01mol of an inert gas have on the equilibrium	ım
	,	position if the volume is kept constant? Show your reasoning.	[2]
	f)	What effect, if any, will the addition of 0.01mol of an inert gas have on the equilibrium	m
		position if the total pressure is kept constant? Show your reasoning.	[2]

Studen	ıt Name	Student numberSection	
6.	Find the	pH of	
	a)	0.020 M HCl	[1]
	b)	0.020 M NaOH	[1]
	c)	0.020 M NH ₃	[3]
		omintum of 2000 and a Concontrol of the concontrol of	
	c)	a mixture of 20.0 cm 3 of 0.020 M HCl + 20.0 cm 3 of 0.020 M NaOH.	[2]
	f)	a mixture of 30.0 cm ³ of 0.020 M HCl + 20.0 cm ³ of 0.020 M NaOH.	[2]
	g)	a mixture of 20.0 cm 3 of 0.020 M HCl + 30.0 cm 3 of 0.020 M NaOH.	[2]
	h)	a mixture of 20.0 cm 3 of 0.020 M HCl + 10.0 cm 3 of 0.020 M NH $_3$.	[2]
			•

Page 8 of 10

Chemistry 225 Final Examination Semester 01-2004

Chemistry 225	Final Examination Semester 01-2004	Page 9 of 10	
Student Name	Student num	nberSection .	
i)	a mixture of 20.0 cm ³ of 0.020 M HCl + 20.0 cm ³	³ of 0.020 M NH _{3.}	[3]

j) a mixture of 20.0 cm³ of 0.020 M HCl + 30.0 cm³ of 0.020 M NH₃

7. Use the following table of standard redox potentials wherever necessary.

	E ⁰ /V
$Cl_2(g) + 2e^- \rightarrow 2Cl^-(aq)$	+1.36
$Ag^{+}(aq) + e^{-} \rightarrow Ag(s)$	+0.80
$Fe^{3+}(aq) + e^{-} \rightarrow Fe^{2+}(aq)$	+0.77
$2H^+(aq) + 2e^- \rightarrow H_2(g)$	0.00
$Fe^{3+}(aq) + 3e^- \rightarrow Fe(s)$	-0.036
$Fe^{2+}(aq) + 2e^{-} \rightarrow Fe(s)$	-0.44

- a)
- This reaction: Ag^+ (aq) + Fe^{2^+} (aq) $\rightarrow Ag$ (s) + Fe^{3^+} (aq) can be made to take place in a galvanic cell.

 i) Draw a fully labeled diagram of a **standard** galvanic cell in which this reaction takes place. Show the direction of flow of electrons and the polarity of the electrodes.

[5]

[3]

Chemistry 225 Final Examination	Semester 01-2004
---------------------------------	------------------

Page 10 of 10

Student Name Student number Section

b) Given the Nernst Equation: $E = E^0 - \frac{0.059}{n} \log Q$,

find the emf of the cell: Fe (s) | Fe²⁺ (0.001 M) \parallel Ag⁺ (0.10 M) | Ag (s)

[3]

a) Acidified potassium dichromate (K₂Cr₂O₇) oxidizes iron (II) to iron (III) in solution whilst it is being reduced to Cr³⁺.

Derive a balanced <u>ionic</u> equation for the reaction.

[3]

 Alkaline potassium chlorate (KClO₃), solution oxidizes hydrazine (N₂H₄) to nitrogen monoxide, (NO), whilst being reduced to potassium chloride (KCl).
 Derive a balanced <u>ionic</u> equation for the reaction .

[3]