The following elementary steps have been proposed for a reaction: $NO + \frac{1}{2}O_2 \rightarrow NO_2$ $NO_2 + H_2O + SO_2 \rightarrow H_2SO_4 + NO$ The catalyst in this process is - NO - A B - $\begin{array}{c} O_2 \\ NO_2 \end{array}$ - C D E SO₂ H₂SO₄ - 6 0.16 mol of SO₂ and 0.12 mol of O₂ were introduced into a 1 dm³ vessel at constant temperature. When the system reached equilibrium, 0.06 mol of SO_3 was present. The reaction is: $2 SO_2(g) + O_2(g) \rightleftharpoons 2 SO_3(g)$. Which set of values shows the concentration of each gas at equilibrium? | | [SO ₂]/moldm ⁻³ | [O ₂]/moldm ⁻³ | [SO ₃]/moldm ⁻³ | |---|--|---------------------------------------|--| | Α | 0.16 | 0.12 | 0.06 | | В | 0.10 | 0.09 | 0.06 | | C | 0.16 | 0.09 | 0.06 | | D | 0.16 | 0.12 | 0.10 | | E | 0.10 | 0.06 | 0.10 | At a given temperature, T, some PCl_5 , at an initial concentration of 1.0 M, was placed in a container and allowed to dissociate into PCl_3 and Cl_2 . It was found that 7. the PCl₅ was 40 % dissociated at equilibrium. K_{c} for the process: $PCl_{5}(g) \rightleftharpoons PCl_{3}(g) + Cl_{2}(g)$ at temperature, T, is closest to - 0.27 - A B C D E 0.40 - 0.60 - 3.7 4.0 - 8. At 298 K, K_c for the process $CaO(s) + CO_2(g) \rightleftharpoons CaCO_3(s)$ is 1.29×10^{24} . Which of the following cannot be deduced from the data? - $\mathbf{K}_{c} = 1/[\mathbf{CO}_{2}]$ - В - Equilibrium position lies far to the right. When calcium oxide and carbon dioxide react, the limiting reagent is almost completely C used up. - D The rate of the reaction between calcium oxide and carbon dioxide to form calcium carbonate is extremely fast. K_p for the reverse process is pCO₂. - E - 9. In an equilibrium system, a catalyst increases - the activation energy of the forward process whilst decreasing that of the reverse process. the rate of forward process whilst decreasing that of the reverse process. - В - the activation energy of both the forward and reverse processes. the enthalpy change for the reverse process. the rates of both the forward and reverse processes. C D Student NameStudent NumberSection - If the system : $NH_4CONH_2(s) \rightleftharpoons 2 NH_3(g) + CO(g)$ is at equilibrium at constant temperature, and some of the ammonium carbamate (NH4CONH2) is removed, then - The masses of ammonia and carbon dioxide increase until equilibrium is re-established. - The masses of ammonia and carbon dioxide decrease until equilibrium is re-established. - C D The mass of ammonium carbamate increases to re-establish equilibrium. - The partial pressures of ammonia and carbon dioxide decrease - The partial pressures of ammonia and carbon dioxide remain unchanged. - Consider the process: $P_4(g) + 6 H_2(g) \rightleftharpoons 4 PH_3(g)$ $\Delta H = +110.5 \text{ kJ}$ 11. at equilibrium. The value of K_c can be increased by - Using a suitable catalyst. - В Adding some H₂ to the equilibrium mixture. - Increasing the concentration of PH₃. - D Increasing the temperature. - Ē Decreasing the volume of the container. - 12. Ammonium hydrogen sulphide dissociates into ammonia and hydrogen sulphide: $NH_4HS(s) \rightleftharpoons NH_3(g) + H_2S(g)$ When ammonium hydrogen sulphide is introduced into a closed vessel at 282.5 K, the total pressure at equilibrium is 0.230 atm. K_p for the system at $282.5~\mathrm{K}$ is closest to - 0.230 - 0.115 - $(0.230)^2$ - C D $(0.115)^2$ - E $\hat{2} \times 0.230$ - 13. For the reaction $PCl_5(g) \Rightarrow PCl_3(g) + Cl_2(g)$, $K_p = 1.7$ at 298K. Five systems were set up with the initial partial pressure of each gas as shown in the table. In which system would the reverse reaction occur to establish equilibrium? ## Initial partial pressure /atm PCl₅ PCl_{3} A B 1 1 2 1 2 2 C 0.5 1.5 D 2 1 - 14. According to the Bronsted-Lowry definition, an acid is a substance which donates a - hydrogen atom. - В hydrogen ion. - hydrogen molecule. 3 hydride ion. E - D E hydroxide ion. - 15. Which does <u>not</u> constitute an acid/base conjugate pair? - H₂SO₄/ HSO₄ - В H₂PO₄/HPO₄ - NH4 / NH3 - C D HNO₂/NO₂ - H₃O⁺/ OH⁻ | | nistry 225 College Chemistry 11 allowed: 3 hours | Final Examination | Semester 04-2002
Page 4 of 10 | | | |--------------|---|---|----------------------------------|--|--| | Stude | ent Name | Student Number | Section | | | | 16. | Which set shows the substances in o | order of increasing acid str | ength? | | | | \mathbf{A} | HClO, HClO ₂ , HClO ₃ | | | | | | B
C | H ₂ SO ₄ , H ₂ SO ₃ , HSO ₄ ⁻
HCl, HBr, HF | | | | | | D | HE, H ₂ O, NH ₃ | | | | | | E | H_3PO_4 , H_2PO_4 , HPO_4^2 | | | | | | 17. | The acidity constant for an acid, HA, is 3.2×10^{-5} . The pK _b of its conjugate base is | | | | | | Α | 4.5 | | | | | | В | 9.5 | | | | | | C
D | 3.1×10^{-10}
1.0×10^{-14} | | | | | | E | 14 | | | | | | - 18. | Which salt would be expected to pro-
solutions have the same molar conce | oduce a solution with the <u>lo</u>
entration. | west pH? Assume all | | | | Α | NaCl | | | | | | В | MgCl ₂ | | | | | | C | CrCl ₃ | | | | | | D
E | CaCl ₂
BaCl ₂ | | | | | | | | | | | | | Quest | ions 19 to 23 refer to the following so | lutions. | | | | | A | 1x10 ⁴ M HI | | | | | | В | 1x10 ⁴ M KOCl | | | | | | C
D | 1x10 ⁴ M Fe(NO ₃) ₃
1x10 ⁴ M KCl | | | | | | E | 1x10 ⁻⁴ M KOH | | | | | | Select | from A to E, | | | | | | 19. | the solution which would have the lo | wort wII | | | | | 20. | the solution which would have the h | | | | | | 21. | the solution which would have a pH | closest to 7. | | | | | 22. | the solution which would have a pH | between 4 and 7. | | | | | 23. | the solution which would have a pH | between 7 and 10. | | | | | | | | | | | | Questi | ons 24 – 28 refer to the following titr | rations: | | | | | A | The titration of 20.0 cm ³ of 0.1M HC | | | | | | B
C | The titration of 20.0 cm ³ of 0.1M HC | Cl with 0.1 M NH ₃ | | | | | D | The titration of 20.0 cm ³ of 0.1M CF
The titration of 20.0 cm ³ of 0.1M KC | 13COOH WITH U.1 M NaOH
NH with O.1 M HC! | 1 | | | | E | The titration of 20.0 cm ³ of 0.1M HN | NO ₃ with 0.1 M KOH | | | | | For wh | ich titration | | | | | | 24. | would there be a decreases in pH as t | the titrant is added? | | | | | 25. | would the pH be greater than 7 at the | e equivalence point? | | | | | 26. | would the pH be lower than 7 at the | equivalence point? | | | | | 27.
28 | would phenolphthalein (pH range 8.3 | 3 - 10.0) be unsuitable as an | n indicator? | | | | 28. | would bromocresol green (pH range | 3.8 - 3.4) be unsuitable as | an indicator? | | | | | nistry 225 College Chemistry 11 allowed: 3 hours | Final Examination | Semester 04-2002
Page 5 of 10 | |--------|--|---|---| | Stude | ent Name | Student Number | Section | | | | | | | 29. | The solubility of silver phosphate(compound is | Ag_3PO_4) is x moldm ⁻³ . The | solubility product of this | | Α | x | | | | В | $4x^2$ | | | | C | $4x^3$ | | | | D · | $27x^4$ | | | | E | 3x ² | | anou es a a a a a a a a a a a a a a a a a a | | Ques | tions 30 and 31 require the following | g information: | | | The s | olubility product of PbCl ₂ is 1.7 x 10 | ⁵ . | | | 30. | The solubility of PbCl ₂ in water is | closest to | | | Α | 1.6 x 10 ⁻² mol dm ⁻³ | | | | В | 4.1 x 10 ⁻³ mol dm ⁻³ | | | | č | 4.3 x 10 ⁻⁶ mol dm ⁻³ | | | | Ď | $2.9 \times 10^{-10} \text{ mol dm}^{-3}$ | | | | Ē | 1.2 x 10 ⁻⁹ mol dm ⁻³ | | | | 31. | The solubility of PbCl ₂ in 0.10M ? | NaCl is closest to | | | ٨ | 1.7 x 10 ⁻³ mol dm ⁻³ | | | | A | 1.7 x 10 mor din
1.6 x 10 ⁻⁴ mol dm ⁻³ | | | | B
C | 1.7 x 10 ⁻⁷ mol dm ⁻³ | | | | D | 1.7 X 10 mol dm | | | | E | 2.9 x 10 ⁻¹ mol dm ⁻³
1.2 x 10 ⁻⁵ mol dm ⁻³ | | | | Ques | stions 32 –33 concern the following c | ompounds: | | | Α | NH₄NO₃ | | | | В | NaH | | | | č | H ₂ O ₂ | | | | Ď | KHCO ₃ | | | | Ē | HBr | | | | . 32. | In which compound does hydroge | n carry an oxidation numbe | er of -1? | | 33. | In which compound does oxygen | carry an oxidation number | of -1? | | Que | stions 34-35 concern the following re | actions: | | | Α | NH₄Cl→ NH₃ + HCl | | | | В | $2 C_2H_6 + 7 O_2 \rightarrow 4 CO_2 + 6 H_2O$ | | | | Ċ | $5 \text{ HClO}_2 \rightarrow 4 \text{ ClO}_2 + \text{HCl} + 2 \text{ H}_2 \text{ G}$ | O | | | Ď | $2 \text{ KMnO}_4 + 5 \text{ SO}_2 + 2 \text{ H}_2\text{O} \rightarrow 2$ | |) ₄ | | E | $S_2O_8^2 + 2I \rightarrow 2SO_4^2 + I_2$ | . <u>-</u> . <u>-</u> | | | 34. | Which is <u>not</u> a redox reaction? | | | | 25 | Which is a disprepartionation report | rian? | | | Che
Time | mistry :
e allow | 225 College
ed: 3 hours | e Chemistr | y 11 Fi | nal Exam | ination | Sem | ester 04-2002
Page 6 of 10 | | |---|--|--|---|---|--|---|-------------------------|--|---| | Stud | ent Na | me | | S | tudent Nu | mber | | Section | | | | tions 3 | 6 - 40 conce | rn the follo | wing graphs | 3: | | | | | | A | | В | | С | | D | | E | | | | | | | | | | | | _ | | Select | t, from | A to E, the g | raph which | best represe | ents: | | | | | | 36.
37.
38.
39.
40. | Rate
Rate
Rate
time. | entration of
of reaction v
of reaction v
of reaction v
itration curv | rersus conce
rersus conce
rersus time | entration of
entration of
for a reversi | X for a rea
X for a rea
ble proces | ection which
ection which
s which att | h is zero or | rder in X.
der in X.
orium after som | e | | SECT | ION B | : Answer <u>all</u> | questions is | n the spece | الداد أناست | | | | | | You m R = 8. pK _w = pK _a (H pK _a (C) | nay use
31 J mo
14 at 29
ClO ₂) =
H ₃ COO | the following $I^{-1} K^{-1} = 0$ | g informatio | on wherever | necessar. | ,. | | | | | Remen | nber to | include unit | s in your an | swers where | ever appro | priate. | | | | | 1. | The ra | te law for the $k [X]^2 [Y]$ | e reaction:
with a rate | $X + 2 Y \rightarrow$ constant of | 4 Z is
1.2 x 10 ⁻⁴ | M ⁻² s ⁻¹ at 2 | 9 8 K . | | | | | a) | Find the ra | te of the rea
1 30.0cm ³ o | action the inf a 0.25 M s | stant 20.0
solution of | cm³ of a 0.
Y at 298 I | 20 M soluti
ζ. | ion of X is [2 marks] | b) | What is the the concent | value of the ration of Y | e <i>rate const</i>
is kept cons | ant if the c
tant at 298 | concentrati
3 K? | on of X is (
[1mark] | doubled and | | | , | c) | The Arrenh
What is re | ius equation
presented by | states that
y e ^{-Ea/RT} ? | $k = Ae^{-Ea/R}$ | т. | [1 m | ark] | | 1. | Chemistry 225 College Chemistry 11
Time allowed: 3 hours | Final Examination | Semester 04-2002
Page 7 of 10 | |---|-------------------|----------------------------------| | Student Name | Student Number | Section | - 2. At 600 °C, the equilibrium constant, K_p , is 0.20 for the reaction : $CO(g) + Cl_2(g) \rightleftharpoons COCl_2(g)$. - a) Find the equilibrium partial pressure of each gas when 0.15 mol each of CO and Cl₂ are admitted into a 1.50 dm³ vessel at 298 K and the system reaches equilibrium. [5 marks] - b) Find the total pressure of the system at equilibrium. [1 mark] - c) What effect, if any, will the addition of 0.01mol of an inert gas have on the equilibrium position if the volume is kept constant? Show your reasoning. [2 marks] - d) What effect, if any, will the addition of 0.01mol of an inert gas have on the equilibrium position if the total pressure is kept constant? Show your reasoning. [2 marks] | Chemistry 225 College Chemistry 11 Time allowed: 3 hours | | | Final Examination | Page 8 of 10 | |--|---------|----------------------------------|-------------------|--------------| | Stud | ent Nar | ne | Student Number | Section | | 3. | Find | the pH of the following solution | ions: | | | | a) | 0.20 M NaClO ₂ | | [4 marks] | b) a mixture of 20.0 cm 3 of 0.20 M HClO $_2$ + 30.0 cm 3 of 0.20 M NaOH. [3 marks] c) a mixture of 30.0 cm 3 of 0.20 M HClO $_2$ + 20.0 cm 3 of 0.20 M NaOH. [3 marks] | Chemistry 225 College Chemistry 11
Time allowed: 3 hours | Final Examination | Semester 04-2002
Page 9 of 10 | |---|-------------------|----------------------------------| | Student Name | .Student Number | Section | 4. Use the following table of standard reduction potentials wherever necessary. | 16.00 | E ⁰ /V | |---|-------------------| | MnO_4 (aq) + 8 H ⁺ (aq) + 5 e ⁻ $\rightarrow Mn^{2+}$ (aq) + 4 H ₂ O (l) | +1.51 | | $Cl_2(g) + 2e^- \rightarrow 2Cl^-(aq)$ | +1.36 | | $\text{Cr}_2\text{O}_7^{-2}$ (aq) + 14 H ⁺ (aq) + 6 e \rightarrow 2 Cr ³⁺ (aq) + 7 H ₂ O (l) | +1.33 | | $Ag^+(aq) + e^- \rightarrow Ag(s)$ | +0.80 | | $Fe^{3+}(aq) + e^{-} \rightarrow Fe^{2+}(aq)$ | +0.77 | | $2 \text{ H}^{+}(\text{aq}) + 2 \text{e}^{-} \rightarrow \text{H}_{2}(\text{g})$ | 0.00 | | $Fe^{3+}(aq) + 3e \rightarrow Fe(s)$ | -0.036 | | $Fe^{2^+}(aq) + 2e^- \rightarrow Fe(s)$ | -0.44 | | $Mg^{2+}(aq) + 2e^- \rightarrow Mg(s)$ | -2.38 | - a) The cell notation represents a <u>standard</u> galvanic cell: Mg (s) | MgCl₂ (aq) || FeCl₃ (aq), FeCl₂ (aq)|Pt (s) - i) Write a balanced <u>ionic</u> equation for the cell reaction.[1 mark] - ii) What is the cell potential? [1 mark] - Draw a <u>fully labeled</u> diagram of the galvanic cell. Show the direction of flow of electrons, the polarity of the electrodes and the concentration of all solutions. [5 marks] - b) Use the table of standard reduction potentials to explain why the reaction of chlorine gas on iron metal produces iron(11) chloride instead of iron (111) chloride. [2 marks] - Given the Nernst Equation: $E = E^0 \frac{0.059}{n} \log Q$, at 298 K, find the value of the equilibrium constant for the reaction: $5 \text{ Fe}^{2+} (\text{aq}) + \text{MnO}_4^- (\text{aq}) + 8 \text{ H}^+ (\text{aq}) \rightleftharpoons \text{Mn}^{2+} (\text{aq}) + 4 \text{ H}_2 \text{O} (\text{I}) + 5 \text{ Fe}^{3+} (\text{aq})$ at 298 K. [3 marks] | | | | 25 College Chemistry 11 d: 3 hours | Final Examination | Semester 04-2002
Page 10 of 10 | |----|-------|--------|--|---|-----------------------------------| | | Stude | nt Nan | ne | Student Number | Section | | 5. | | | e a balanced <u>ionic</u> equation for ining them. | or each reaction by writing l | nalf equations and then | | | | a) | PbS (s) + NO_3 (aq) \rightarrow S (s) |) + Pb ²⁺ (aq) + NO (g) (in <u>a</u> | cid medium) [3 marks] | b) MnO_4 (aq) + IO_3 (aq) $\rightarrow MnO_2$ (s) + IO_4 (aq) (in <u>basic</u> medium) [3 marks] 6. Use the given K_c values for the processes $X,\,Y$ and Z to find K_c for the process Q. Process X: $N_2O_4(g) \rightleftharpoons 2 NO_2(g)$ $K_c = K_x = 4.6 \times 10^{-3}$ Process Y: $N_2(g) + 2 O_2(g) \rightleftharpoons 2 NO_2(g)$ $K_c = K_y = 1.7 \times 10^{-17}$ Process Z: $2 N_2 O(g) + 3 O_2(g) \rightleftharpoons 2 N_2 O_4(g)$ $K_c = K_z = 1.2 \times 10^6$ Process Q: $N_2(g) + \frac{1}{2} O_2(g) \rightleftharpoons N_2O(g)$ [2 marks] END OF EXAMINATION