The following elementary steps have been proposed for a reaction:

 $NO + \frac{1}{2}O_2 \rightarrow NO_2$

 $NO_2 + H_2O + SO_2 \rightarrow H_2SO_4 + NO$

The catalyst in this process is

- NO
- A B
- $\begin{array}{c} O_2 \\ NO_2 \end{array}$
- C D E SO₂ H₂SO₄
- 6 0.16 mol of SO₂ and 0.12 mol of O₂ were introduced into a 1 dm³ vessel at constant temperature. When the system reached equilibrium, 0.06 mol of SO_3 was present.

The reaction is: $2 SO_2(g) + O_2(g) \rightleftharpoons 2 SO_3(g)$.

Which set of values shows the concentration of each gas at equilibrium?

	[SO ₂]/moldm ⁻³	[O ₂]/moldm ⁻³	[SO ₃]/moldm ⁻³
Α	0.16	0.12	0.06
В	0.10	0.09	0.06
C	0.16	0.09	0.06
D	0.16	0.12	0.10
E	0.10	0.06	0.10

At a given temperature, T, some PCl_5 , at an initial concentration of 1.0 M, was placed in a container and allowed to dissociate into PCl_3 and Cl_2 . It was found that 7. the PCl₅ was 40 % dissociated at equilibrium.

 K_{c} for the process: $PCl_{5}(g) \rightleftharpoons PCl_{3}(g) + Cl_{2}(g)$ at temperature, T, is closest to

- 0.27
- A B C D E 0.40
- 0.60
- 3.7 4.0
- 8. At 298 K, K_c for the process $CaO(s) + CO_2(g) \rightleftharpoons CaCO_3(s)$ is 1.29×10^{24} . Which of the following cannot be deduced from the data?
- $\mathbf{K}_{c} = 1/[\mathbf{CO}_{2}]$
- В
- Equilibrium position lies far to the right.

 When calcium oxide and carbon dioxide react, the limiting reagent is almost completely C used up.
- D The rate of the reaction between calcium oxide and carbon dioxide to form calcium carbonate is extremely fast. K_p for the reverse process is pCO₂.
- E
- 9. In an equilibrium system, a catalyst increases
- the activation energy of the forward process whilst decreasing that of the reverse process. the rate of forward process whilst decreasing that of the reverse process.
- В
- the activation energy of both the forward and reverse processes. the enthalpy change for the reverse process. the rates of both the forward and reverse processes. C D

Student NameStudent NumberSection

- If the system : $NH_4CONH_2(s) \rightleftharpoons 2 NH_3(g) + CO(g)$ is at equilibrium at constant temperature, and some of the ammonium carbamate (NH4CONH2) is removed, then
- The masses of ammonia and carbon dioxide increase until equilibrium is re-established.
- The masses of ammonia and carbon dioxide decrease until equilibrium is re-established.
- C D The mass of ammonium carbamate increases to re-establish equilibrium.
- The partial pressures of ammonia and carbon dioxide decrease
- The partial pressures of ammonia and carbon dioxide remain unchanged.
- Consider the process: $P_4(g) + 6 H_2(g) \rightleftharpoons 4 PH_3(g)$ $\Delta H = +110.5 \text{ kJ}$ 11. at equilibrium. The value of K_c can be increased by
- Using a suitable catalyst.
- В Adding some H₂ to the equilibrium mixture.
- Increasing the concentration of PH₃.
- D Increasing the temperature.
- Ē Decreasing the volume of the container.
- 12. Ammonium hydrogen sulphide dissociates into ammonia and hydrogen sulphide: $NH_4HS(s) \rightleftharpoons NH_3(g) + H_2S(g)$

When ammonium hydrogen sulphide is introduced into a closed vessel at 282.5 K, the total pressure at equilibrium is 0.230 atm. K_p for the system at $282.5~\mathrm{K}$ is closest to

- 0.230
- 0.115
- $(0.230)^2$
- C D $(0.115)^2$
- E $\hat{2} \times 0.230$
- 13. For the reaction $PCl_5(g) \Rightarrow PCl_3(g) + Cl_2(g)$, $K_p = 1.7$ at 298K. Five systems were set up with the initial partial pressure of each gas as shown in the table. In which system would the reverse reaction occur to establish equilibrium?

Initial partial pressure /atm PCl₅ PCl_{3} A B 1 1 2 1 2 2 C 0.5 1.5 D 2 1

- 14. According to the Bronsted-Lowry definition, an acid is a substance which donates a
- hydrogen atom.
- В hydrogen ion.
- hydrogen molecule.

3

hydride ion.

E

- D E hydroxide ion.
- 15. Which does <u>not</u> constitute an acid/base conjugate pair?
- H₂SO₄/ HSO₄
- В H₂PO₄/HPO₄
- NH4 / NH3
- C D HNO₂/NO₂
- H₃O⁺/ OH⁻

	nistry 225 College Chemistry 11 allowed: 3 hours	Final Examination	Semester 04-2002 Page 4 of 10		
Stude	ent Name	Student Number	Section		
16.	Which set shows the substances in o	order of increasing acid str	ength?		
\mathbf{A}	HClO, HClO ₂ , HClO ₃				
B C	H ₂ SO ₄ , H ₂ SO ₃ , HSO ₄ ⁻ HCl, HBr, HF				
D	HE, H ₂ O, NH ₃				
E	H_3PO_4 , H_2PO_4 , HPO_4^2				
17.	The acidity constant for an acid, HA, is 3.2×10^{-5} . The pK _b of its conjugate base is				
Α	4.5				
В	9.5				
C D	3.1×10^{-10} 1.0×10^{-14}				
E	14				
- 18.	Which salt would be expected to pro- solutions have the same molar conce	oduce a solution with the <u>lo</u> entration.	west pH? Assume all		
Α	NaCl				
В	MgCl ₂				
C	CrCl ₃				
D E	CaCl ₂ BaCl ₂				
Quest	ions 19 to 23 refer to the following so	lutions.			
A	1x10 ⁴ M HI				
В	1x10 ⁴ M KOCl				
C D	1x10 ⁴ M Fe(NO ₃) ₃ 1x10 ⁴ M KCl				
E	1x10 ⁻⁴ M KOH				
Select	from A to E,				
19.	the solution which would have the lo	wort wII			
20.	the solution which would have the h				
21.	the solution which would have a pH	closest to 7.			
22.	the solution which would have a pH	between 4 and 7.			
23.	the solution which would have a pH	between 7 and 10.			
Questi	ons 24 – 28 refer to the following titr	rations:			
A	The titration of 20.0 cm ³ of 0.1M HC				
B C	The titration of 20.0 cm ³ of 0.1M HC	Cl with 0.1 M NH ₃			
D	The titration of 20.0 cm ³ of 0.1M CF The titration of 20.0 cm ³ of 0.1M KC	13COOH WITH U.1 M NaOH NH with O.1 M HC!	1		
E	The titration of 20.0 cm ³ of 0.1M HN	NO ₃ with 0.1 M KOH			
For wh	ich titration				
24.	would there be a decreases in pH as t	the titrant is added?			
25.	would the pH be greater than 7 at the	e equivalence point?			
26.	would the pH be lower than 7 at the	equivalence point?			
27. 28	would phenolphthalein (pH range 8.3	3 - 10.0) be unsuitable as an	n indicator?		
28.	would bromocresol green (pH range	3.8 - 3.4) be unsuitable as	an indicator?		

	nistry 225 College Chemistry 11 allowed: 3 hours	Final Examination	Semester 04-2002 Page 5 of 10
Stude	ent Name	Student Number	Section
29.	The solubility of silver phosphate(compound is	Ag_3PO_4) is x moldm ⁻³ . The	solubility product of this
Α	x		
В	$4x^2$		
C	$4x^3$		
D ·	$27x^4$		
E	3x ²		anou es a a a a a a a a a a a a a a a a a a
Ques	tions 30 and 31 require the following	g information:	
The s	olubility product of PbCl ₂ is 1.7 x 10	⁵ .	
30.	The solubility of PbCl ₂ in water is	closest to	
Α	1.6 x 10 ⁻² mol dm ⁻³		
В	4.1 x 10 ⁻³ mol dm ⁻³		
č	4.3 x 10 ⁻⁶ mol dm ⁻³		
Ď	$2.9 \times 10^{-10} \text{ mol dm}^{-3}$		
Ē	1.2 x 10 ⁻⁹ mol dm ⁻³		
31.	The solubility of PbCl ₂ in 0.10M ?	NaCl is closest to	
٨	1.7 x 10 ⁻³ mol dm ⁻³		
A	1.7 x 10 mor din 1.6 x 10 ⁻⁴ mol dm ⁻³		
B C	1.7 x 10 ⁻⁷ mol dm ⁻³		
D	1.7 X 10 mol dm		
E	2.9 x 10 ⁻¹ mol dm ⁻³ 1.2 x 10 ⁻⁵ mol dm ⁻³		
Ques	stions 32 –33 concern the following c	ompounds:	
Α	NH₄NO₃		
В	NaH		
č	H ₂ O ₂		
Ď	KHCO ₃		
Ē	HBr		
. 32.	In which compound does hydroge	n carry an oxidation numbe	er of -1?
33.	In which compound does oxygen	carry an oxidation number	of -1?
Que	stions 34-35 concern the following re	actions:	
Α	NH₄Cl→ NH₃ + HCl		
В	$2 C_2H_6 + 7 O_2 \rightarrow 4 CO_2 + 6 H_2O$		
Ċ	$5 \text{ HClO}_2 \rightarrow 4 \text{ ClO}_2 + \text{HCl} + 2 \text{ H}_2 \text{ G}$	O	
Ď	$2 \text{ KMnO}_4 + 5 \text{ SO}_2 + 2 \text{ H}_2\text{O} \rightarrow 2$) ₄
E	$S_2O_8^2 + 2I \rightarrow 2SO_4^2 + I_2$. <u>-</u> . <u>-</u>	
34.	Which is <u>not</u> a redox reaction?		
25	Which is a disprepartionation report	rian?	

Che Time	mistry : e allow	225 College ed: 3 hours	e Chemistr	y 11 Fi	nal Exam	ination	Sem	ester 04-2002 Page 6 of 10	
Stud	ent Na	me		S	tudent Nu	mber		Section	
	tions 3	6 - 40 conce	rn the follo	wing graphs	3:				
A		В		С		D		E	
									_
Select	t, from	A to E, the g	raph which	best represe	ents:				
36. 37. 38. 39. 40.	Rate Rate Rate time.	entration of of reaction v of reaction v of reaction v itration curv	rersus conce rersus conce rersus time	entration of entration of for a reversi	X for a rea X for a rea ble proces	ection which ection which s which att	h is zero or	rder in X. der in X. orium after som	e
SECT	ION B	: Answer <u>all</u>	questions is	n the spece	الداد أناست				
You m R = 8. pK _w = pK _a (H pK _a (C)	nay use 31 J mo 14 at 29 ClO ₂) = H ₃ COO	the following $I^{-1} K^{-1} = 0$	g informatio	on wherever	necessar.	,.			
Remen	nber to	include unit	s in your an	swers where	ever appro	priate.			
1.	The ra	te law for the $k [X]^2 [Y]$	e reaction: with a rate	$X + 2 Y \rightarrow$ constant of	4 Z is 1.2 x 10 ⁻⁴	M ⁻² s ⁻¹ at 2	9 8 K .		
	a)	Find the ra	te of the rea 1 30.0cm ³ o	action the inf a 0.25 M s	stant 20.0 solution of	cm³ of a 0. Y at 298 I	20 M soluti ζ.	ion of X is [2 marks]	
	b)	What is the the concent	value of the ration of Y	e <i>rate const</i> is kept cons	ant if the c tant at 298	concentrati 3 K?	on of X is ([1mark]	doubled and	
,	c)	The Arrenh What is re	ius equation presented by	states that y e ^{-Ea/RT} ?	$k = Ae^{-Ea/R}$	т.	[1 m	ark]	

1.

Chemistry 225 College Chemistry 11 Time allowed: 3 hours	Final Examination	Semester 04-2002 Page 7 of 10
Student Name	Student Number	Section

- 2. At 600 °C, the equilibrium constant, K_p , is 0.20 for the reaction : $CO(g) + Cl_2(g) \rightleftharpoons COCl_2(g)$.
 - a) Find the equilibrium partial pressure of each gas when 0.15 mol each of CO and Cl₂ are admitted into a 1.50 dm³ vessel at 298 K and the system reaches equilibrium. [5 marks]

- b) Find the total pressure of the system at equilibrium. [1 mark]
- c) What effect, if any, will the addition of 0.01mol of an inert gas have on the equilibrium position if the volume is kept constant? Show your reasoning.

 [2 marks]
- d) What effect, if any, will the addition of 0.01mol of an inert gas have on the equilibrium position if the total pressure is kept constant? Show your reasoning. [2 marks]

Chemistry 225 College Chemistry 11 Time allowed: 3 hours			Final Examination	Page 8 of 10
Stud	ent Nar	ne	Student Number	Section
3.	Find	the pH of the following solution	ions:	
	a)	0.20 M NaClO ₂		[4 marks]

b) a mixture of 20.0 cm 3 of 0.20 M HClO $_2$ + 30.0 cm 3 of 0.20 M NaOH. [3 marks]

c) a mixture of 30.0 cm 3 of 0.20 M HClO $_2$ + 20.0 cm 3 of 0.20 M NaOH. [3 marks]

Chemistry 225 College Chemistry 11 Time allowed: 3 hours	Final Examination	Semester 04-2002 Page 9 of 10
Student Name	.Student Number	Section

4. Use the following table of standard reduction potentials wherever necessary.

16.00	E ⁰ /V
MnO_4 (aq) + 8 H ⁺ (aq) + 5 e ⁻ $\rightarrow Mn^{2+}$ (aq) + 4 H ₂ O (l)	+1.51
$Cl_2(g) + 2e^- \rightarrow 2Cl^-(aq)$	+1.36
$\text{Cr}_2\text{O}_7^{-2}$ (aq) + 14 H ⁺ (aq) + 6 e \rightarrow 2 Cr ³⁺ (aq) + 7 H ₂ O (l)	+1.33
$Ag^+(aq) + e^- \rightarrow Ag(s)$	+0.80
$Fe^{3+}(aq) + e^{-} \rightarrow Fe^{2+}(aq)$	+0.77
$2 \text{ H}^{+}(\text{aq}) + 2 \text{e}^{-} \rightarrow \text{H}_{2}(\text{g})$	0.00
$Fe^{3+}(aq) + 3e \rightarrow Fe(s)$	-0.036
$Fe^{2^+}(aq) + 2e^- \rightarrow Fe(s)$	-0.44
$Mg^{2+}(aq) + 2e^- \rightarrow Mg(s)$	-2.38

- a) The cell notation represents a <u>standard</u> galvanic cell: Mg (s) | MgCl₂ (aq) || FeCl₃ (aq), FeCl₂ (aq)|Pt (s)
 - i) Write a balanced <u>ionic</u> equation for the cell reaction.[1 mark]
 - ii) What is the cell potential? [1 mark]
 - Draw a <u>fully labeled</u> diagram of the galvanic cell. Show the direction of flow of electrons, the polarity of the electrodes and the concentration of all solutions. [5 marks]

- b) Use the table of standard reduction potentials to explain why the reaction of chlorine gas on iron metal produces iron(11) chloride instead of iron (111) chloride. [2 marks]
- Given the Nernst Equation: $E = E^0 \frac{0.059}{n} \log Q$, at 298 K, find the value of the equilibrium constant for the reaction: $5 \text{ Fe}^{2+} (\text{aq}) + \text{MnO}_4^- (\text{aq}) + 8 \text{ H}^+ (\text{aq}) \rightleftharpoons \text{Mn}^{2+} (\text{aq}) + 4 \text{ H}_2 \text{O} (\text{I}) + 5 \text{ Fe}^{3+} (\text{aq})$ at 298 K. [3 marks]

			25 College Chemistry 11 d: 3 hours	Final Examination	Semester 04-2002 Page 10 of 10
	Stude	nt Nan	ne	Student Number	Section
5.			e a balanced <u>ionic</u> equation for ining them.	or each reaction by writing l	nalf equations and then
		a)	PbS (s) + NO_3 (aq) \rightarrow S (s)) + Pb ²⁺ (aq) + NO (g) (in <u>a</u>	cid medium) [3 marks]

b) MnO_4 (aq) + IO_3 (aq) $\rightarrow MnO_2$ (s) + IO_4 (aq) (in <u>basic</u> medium) [3 marks]

6. Use the given K_c values for the processes $X,\,Y$ and Z to find K_c for the process Q.

Process X: $N_2O_4(g) \rightleftharpoons 2 NO_2(g)$ $K_c = K_x = 4.6 \times 10^{-3}$ Process Y: $N_2(g) + 2 O_2(g) \rightleftharpoons 2 NO_2(g)$ $K_c = K_y = 1.7 \times 10^{-17}$

Process Z: $2 N_2 O(g) + 3 O_2(g) \rightleftharpoons 2 N_2 O_4(g)$ $K_c = K_z = 1.2 \times 10^6$

Process Q: $N_2(g) + \frac{1}{2} O_2(g) \rightleftharpoons N_2O(g)$

[2 marks]

END OF EXAMINATION