Chemistry :	225	Final	Examination	01-2005	
-------------	-----	-------	-------------	---------	--

Page 1 of 8

Name	Student Number	Course Section
------	----------------	----------------

INSTRUCTIONS TO CANDIDATES:

This examination paper consists of 35 questions on 8 pages. The paper consists of two sections. Section A contains 30 multiple-choice questions. Section B contains 5 structured questions. Specific directions are given at the beginning of each section. Students are allowed to use calculators during this examination.

You may find the following information useful. Use the following information where appropriate: $K_w = 1x10^{-14}$ $R = 8.31 \text{ J mol}^{-1} \text{ K}^{-1} \text{ or } 0.0821 \text{ atm dm}^3 \text{ mol}^{-1} \text{ K}^{-1}$

SECTION A: Multiple Choice Questions

This section contains 25 multiple choice questions.: Each question is followed by 5 answers. Select the answer that best fits. Mark your answer on the multiple choice answer sheet that has been provided for you. Each question is worth one mark.

1. Consider the following reaction:

$$2A + B \rightarrow 2C$$

at constant temperature. In several experiments, it was found that when the the concentration of A was doubled, and the the concentration of B was halved, initial rate rate was unchanged. Which of the following rate laws is consistent with this this observation?

- $R = k [A]^{2}[B]$ $R = k [A]^{2}[B]^{2}$ В $R = k [A][B]^{2}$ $R = k [A^{2}]$ С
- D Е R = k [A]2[B]
- 2. A first-order reaction is known to have a half-life of 20 minutes. *Approximately* what amount of an original sample will remain after 73 minutes?

A greater than one-half

- B. less than one-half but greater than onethird
- C. less than one-third but greater than onefourth
- D. less than one-fourth but greater than one-eighth
- E. less than one-eighth but greater than one-sixteenth
- 3. The presence of a catalyst increases he rate of a chemical reaction by

A. increasing the frequency of molecular collisions

- B. changing the molecular geometry of a collision between reactant molecules C. providing an alternate reaction pathway,
- requiring less activation energy D. increasing the energy of the molecules when they collide
- E. decreasing the particle size of the reactant molecules
- 4. The following mechanism has been proposed for the decomposition of hydrogen peroxide:

Step (i)

$$H_2O_2(aq) + I^*(aq) \rightarrow H_2O(I) + IO^*(aq)$$
 slow
Step (ii)

 H_2O_2 (aq) +IO (aq) \rightarrow H_2O (I) +O₂(g)+I (aq) fast

Which statement is **NOT** consistent with this proposed mechanism?

- Α 10° is a reaction intermediate.
- I is a catalyst.
- С The rate-determining step is bimolecular.
- D The reaction is first order with respect to H₂O₂. The reaction is first order
- Е with respect to O₂
- For which equilibrium system, at constant 5. temperature, will increasing the pressure cause the equilibrium to shift to the Iaft?

$$\begin{array}{l} \text{A 2 CO } (g) + \text{O}_2 \, (g) & \rightleftharpoons \text{CO}_2 \, (g) \\ \text{B C } (s) + \text{O}_2 \, (g) & \rightleftharpoons \text{CO}_2 \, (g) \\ \text{C COCl}_2 \, (g) & \rightleftharpoons \text{CO } (g) + \text{Cl}_2 \, (g) \\ \text{D N}_2 \, (g) + 3 \, \text{H}_2 \, (g) & \rightleftharpoons 2 \, \text{NH}_3 \, \, (g) \\ \text{E CaO } (s) + \text{CO}_2 \, (g) & \rightleftharpoons \text{CaCO}_3 \, (s) \end{array}$$

Ammonium hydrogen sulphide is heated in a sealed container until the equilibrium 6. described below is established.

 $NH_4HS(s) \rightleftharpoons H_2S(g) + NH_3(g)$ if the total pressure at equilibrium is 0.53 atm., what is the value of K_p for the system?

- 0.265
- В 0.28
- С 0.070
- 1.06
- 0.079
- 7. Solid HgO, liquid Hg, and gaseous O2 are placed in a glass bulb and allowed to reach equilibrium at a constant temperature.

2 HgO (s)
$$\leftrightarrow$$
 Hg (l) + O₂ (g). Δ H = + 43.3 kcal.

The mass of Hg in the bulb can be increased by

- adding some HgO.
- В removing some O2.
- С reducing the volume of the bulb.
- D lowering the temperature.
- adding some O2.

emistry 225 Final Examination 01-2005	Page 2 of 8
Name Student Num	
8.According to the Bronsted-Lowry definition, an base is a substance which accepts	A 1.12 g B 5.60 g C 56.0 g D 112 g
A hydrogen atom. B hydrogen ion.	E 200 g 15. 0.1M solutions of each of the following
C hydrogen molecule. D hydride ion. E hydroxide ion.	salts were prepared. Which salt would be expected to produce a solution with the lowest pH?
Which does NOT constitute an acid/base conjugate pair?	A KNO ₃ B Mg (NO ₃) ₂
A HSO_4/SO_4^2 B HNO_3/HNO_2 C NH_4^+/NH_3	C Al(NO_3) ₃ D Ca (NO_3) ₂ E Ba(NO_3) ₂
D H ₃ O ⁺ / H ₂ O E HNO ₂ / NO ₂	16. Which set shows the substances in order of <u>increasing</u> acid strength?
0. A salt solution has a pH of 7.7. The concentration of H ⁺ ions in this solution is closest to	A HF, HBr, HCl. B H ₂ SO ₄ , H ₂ SO ₃ , HSO ₄ ⁻ . C HCl, HBr, HF D HSO ₄ ⁻ . H ₂ SO ₃ , H ₂ SO ₄ ,
A 2 x 10 ⁻⁸ M B 2 x 10 ⁻⁷ M C 7 x 10 ⁻⁷ M D 7 x 10 ⁻⁸ M	E HNO ₃ , HNO ₂ 17. Identify the acid/base conjugate pair.
E 8.9 x 10 ⁻¹ M	A H_2SO_4/SO_4^{2-} B HNO_3/HNO_2 C NH_4^{-1}/NH_3
 A salt solution has a pH of 7.9. Which of the following pairs of compounds would be most likely to produce a salt of this pH ? 	D H_2O/H_2O_2 E HNO_2/NO_3 Questions 18 to 21 refer to the following solutions
A Hydrochloric acid & potassium hydroxide	all at a molarity of 1x10 ⁻³ M A HClO₄
B Nitric acid & ammonia C Ethanoic acid & sodium hydroxide DSulphuric acid & copper (II) oxide E Hydrochloric acid & iron (II) hydroxide	B NaOCI C FeCI ₃ D NaCI E NaOH
2. Predict the pH of a solution in which the concentrations of H₃O⁺ and OH⁻	Select from A to E,
are equal.	 The solution which would have the lowest pH. A
A7 B0 C 14 D1 x 10 ⁷	19. The solution which would have the highest pH E
E1 x 10 ⁻¹⁴	 The solution which would have a pH between 3 and 6.9. C
3. The pH of 2.5 x 10 ⁻⁴ M KOH is closest to A 1 B 4 C 6	 The solution which would have a pH between 7 and 12. B A saturated solution of silver phosphate (Ag₃PO₄) contains 1.5x10⁻⁵ mol dm⁻³ Ag⁺ ions. The solubility product of this compound is
D 10 E 14 4. What mass of solid KOH (RFM = 56.0) must	A $(1.5 \times 10^{-5})^4$ B $(4.5 \times 10^{-5})^3 (1.5 \times 10^{-5})$ C $(4.5 \times 10^{-5})^3 + (1.5 \times 10^{-5})$
be added to 400 cm³ of 0.050 M HNO₃ in order to obtain a solution of pH 7.0?	C $(4.5x10^{-5})^3 + (1.5x10^{-5})$ D $4(1.5x10^{-5})$ E $4(1.5x10^{-5})^3$

Name	Student Number	Course	Section

23. The solubility products for five salts is given below. Which of the salts has the greatest molar solubility in aqueous solution?

A BaSO₄, $K_{sp} = 8.7 \times 10^{-10}$ B CuS, $K_{sp} = 6.0 \times 10^{-36}$ C ZnS, $K_{sp} = 1.2 \times 10^{-23}$ D SrSO₄, $K_{sp} = 3.5 \times 10^{-7}$ E AgCl, $K_{sp} = 1.8 \times 10^{-10}$

In which compound does oxygen carry an oxidation number of +2? 24.

> H₂O B H₂O₂ C F₂O D Na₂O E CO₂

25. All of the following mixtures result in the formation of a buffer solution except

A. Equal volumes of 0.10 M CH₃COOH and 0.10 M NaCH₃CO₂

B 100 mL of 0.10 *M* CH₃COOH and 50 mL of 0.10 *M* NaOH

C 100 mL of 0.10 M CH₃COOH and 100 mL of 0.10 M NaOH

D 50 mL of 0.10 M NaHCO₃ and 100 mL of 0.10 *M* Na₂CO₃ E 50 mL of 0.10 *M* NH₃ and 25 mL of

0.10 M HCl hydroxide

26. Consider the voltaic cell,

 $Ni|Ni^{2+}(1 M)||Hg_2^{2+}(1 M)|Hg.$ Which substance is considered the reducing agent in the cell reaction?

A. Ni B. Ni²⁺ C Hg D Hg₂²⁺

E can not be determined without additional data

27. A voltaic cell consists of a copper electrode immersed in a solution of 1.0 M copper(11) chloride and a zinc electrode immersed in a solution of 1.0 M zinc nitrate. The two half cells are connected by means of a salt bridge.

Given the standard electrode potential (E⁰)

values: Cu²⁺/Cu +t Zn²⁺/Zn -0 +0.34V -0.76V

Which statement is false?

The copper electrode is the cathode. The mass of the zinc electrode A B

decreases during discharge.
The concentration of Cu²⁺ decreases С during discharge.

The cell potential is zero when the concentration of Cu²⁺ is equal to the concentration of Zn²⁺. D

Е Electrons flow through the external circuit from the zinc electrode to the copper electrode

28. For the cell reaction,

 $3 \text{ VO}_2^+ + 6 \text{ H}^+ + \text{Al} ---> 3 \text{ VO}^{2+} + \text{Al}^{3+} + 3 \text{ H}_2\text{O}$ what is the value of **n**, the number of moles of electrons exchanged in the reaction?

29. Select the species whose highlighted atom has the highest oxidation number of all the species shown..

> MnO₂ A B Na₂MnO₄ Mg**C**O₃ IO₃, 5+ CIO₄, 7+ D Е

30. The standard cell voltage for the following cell is +0.61 V.

 $TI[TI^*]|CI^*|Hg_2CI_2|Hg\\$ If the standard reduction potential for the \$\$TI^*/TI\$ redox couple is \$-0.34 V\$, what is the standard reduction potential of the Hg₂Cl₂/Cl⁻/Hg redox couple?

A B +0.27 V -0.27 V -0.95 V D E +0.95 V +0.61 V

Use the following information where appropriate: R = 8.31 J mol $^{-1}$ K $^{-1}$ =0.0821 atm dm 3 mol $^{-1}$ K $^{-1}$ K $_w$ = 1x10 $^{-14}$

 $K_a(NH_4^+) = 6.3 \times 10^{-10}$

 $K_w = 1 \times 10^{-14}$ The Henderson Hasselbach equation : $pH = pK_a + log [base]$,

 $K_a(CH_3COOH) = 1.8 \times 10^{-5}$

1. RATES OF REACTION

The following experimental data was collected for the reaction below.

$$2CIO_2(aq) + 2OH(aq) \rightarrow CIO_3(aq) + CIO_2(aq) + H_2O(I)$$

All experiments were conducted at the same temperature.

initi	al [ClO₂]/M	initial [OH]/M	initial rate of	formation ClO ₃ in M s ⁻¹
exp 1	1.5 x 10 ⁻²	1.5 x	10 ⁻²	3.88 x 10 ⁻⁴
exp 2	3.0 x 10 ⁻²	1.5 x	10 ⁻²	1.55 x 10 ⁻³
exp 3	1.5 x 10 ⁻²	3.0 x	10 ⁻²	7.76 x 10 ⁻⁴
A. Write	a rate law for the	ne reaction		

B. Find the value of the rate constant, k.

(3)

(1)

Page 4 of 8

C. Why was it necessary to carry out the 3 experiments at the same temperature? (1)

D. Calculate the initial rate of reaction the instant 20cm³ of 0.10M ClO₂ is mixed with 30cm³ of 0.40M OH⁻.

E. If the reaction was carried out at a higher temperature, what effect would there be on the activation energy?

F. In a fourth experiment, a substance X, was added to the mixture. It was found to increase the reaction rate. However the concentration of substance X at the end of the experiment was the same as at the beginning. How do you account for these observations?

N ₂ O ₄ (g) was place	ced in a 1.0 dm ³ vesse	$O_2(g)$ is 4.61 x 10 ⁻³ . el and allowed to co	me to equilibrium	with NO₂ at 2
A. Calculate the m	nolar concentration of	each gas at equilib	rium	(4)
B. What effect wou	ıld there be on equilib	rium position if 0.1 i	mol NO₂ was added	d? (1)
C. Justify your ans	wer , with reference to	Le Chatelier's Prir	nciple.	(2)
				` '

Chemi	stry 225 Final Examination 01-2005	Page 6 of 8
Name	Student Number	Course Section
3. AC	ID- BASE EQUILIBRIA	
lov	r each pair of substances given, underline the substance which will proc wer pH , assuming all solutions are at a concentration of 0.10 M. In eac ason for your answer, with equations and/ or Lewis structures to suppor	ch case give a
a)	HNO ₂ and HNO ₃	(2)
c)	HF and HBr.	(2)
B. A	25.0 cm³ aliquot of 0.20 M CH₃COOH solution was titrated with 0.20M alculate the pH of the titration mixture when:	KOH solution.
	i. 5.00 cm³ of KOH(aq) has been added.	(3)
		(2)
	ii. 25.0cm³ of KOH(aq) has been added.	(3)
	iii. 35.0cm ³ of KOH (ag) has been added.	(3)

iii. 35.0cm³ of KOH (aq) has been added.

Chemistry 225 Final Examination 01-2005	Page 7 of 8
Name Student Number Cours	se Section
 3. Benzoic acid C ₆ H₅COOH is a monoprotic acid with a pKa value of 4.18. i.Calculate the concentration of all species present in a 0.40 M solution of the a	acid. (4)
ii. What is the pH of a 0.40M solution of benzoic acid?	(2)
C.i. The pH of 0.15 M sodium propanoate , C₂H₅COONa is 9.02. Calculate the pl	$K_\mathtt{b}$ of the
propanoate ion.	(3)
ii. Explain/ define the term buffer, and state the name or chemical formula of a could be mixed with sodium propanoate to create a buffer.	substance that (3
4.SOLUBILITY EQUILIBRIA A. The Ksp for magnesium hydroxide $Mg(OH)_2$ is 1.2 x 10 ⁻¹¹ .	
Calculate the molar solubility of Mg(OH)₂ in distilled water.	(4)
B. The molar solubility of Mg(OH) ₂ in 0.10 M Mg(NO) ₃ is less than the solubility in	water. How d
you account for this difference in solubility ?	(3)

Chemistry 225 Final Examination 01-2005	Page 8 of 8
Name Student Number	
5. REDOX REACTIONS	
A. i. Draw and label the Daniel Cell described by the cell notation below: $Zn(s)I\ Zn^{2^+}(aq,1M)\ II\ Cu^{2^+}(aq,1M)ICu(s)$	(4)
ii. State/explain the purpose of the salt bridge.	(1)
B.Write a balanced ionic equation for the cell reaction.	
and a state of the equation for the centreaction.	(2)
C. Calculate the cell potential, given that the standard state reduction potent	
Cu ²⁺ are -0.76 V and + 0.34 V respectively.	tials for Zn²+ and (3)
D. The following reaction takes place in an acid medium.	
$S_2O_6^{2-}(aq) + HCIO_{2(g)}> SO_4(aq) + CI_2(g)$	
Derive a balanced <u>ionic</u> equation for the reaction, by writing suitable half	equations and then
combining them.	(3)
. The following reaction takes place in a basic medium.	
$Bi_2O_3(s) + OCI^-(aq),> BiO_3^-(aq) + chloride Cl^-(aq)$	
Derive a balanced ionic equation for the reaction, by writing suitable half equation for the reaction for the reaction by writing suitable half equation for the reaction for th	wations and the
combining them.	
	(3)

THIS IS THE END OF YOUR C225 FINAL EXAMINATION.