SECTION A: Multiple Choice

[1 mark each = 35 marks]

Each question is followed by five suggested answers. Select the best answer and shade the letter corresponding to this answer on the answer sheet provided.

- 1. Ammonia can be oxidized according to the equation:
 - $4 \text{ NH}_3(g) + 5 \text{ O}_2(g) \rightarrow 4 \text{ NO}(g) + 6 \text{ H}_2\text{O}(g)$

If in a particular reaction the $\Delta[O_2]$ is -0.008 mol dm⁻³, then $\Delta[NO]$, in mol dm⁻³ is

- -5/4 x 0.008 A
- В $5/4 \times 0.008$
- C -4/5 x 0.008
- D $4/5 \times 0.008$
- $4 \times 5 \times 0.008$

The reaction $2H_2(g) + 2NO(g) \rightarrow 2H_2O(g) + N_2(g)$ is first order in hydrogen and second order in nitrogen monoxide.

- If the rate of the reaction is expressed in M s⁻¹, the correct unit for the rate constant, k, is
- $M^{-2} s^{-1}$ Α
- $M^2 s^{-1}$ В
- M s⁻¹ C
- $M^{-2} s^{-2}$ $M s^2$ D
- Ε
- 3. In a particular experiment, the rate of formation of nitrogen was 0.004 M s⁻¹. What would be the rate of formation of nitrogen, in Ms⁻¹, if the concentration of hydrogen is halved and that of nitrogen monoxide is doubled?
- Α 0.002
- В 0.004
- C 0.008
- D 0.012
- Ε 0.016
- 4. The energy of activation for a process can be decreased by
- Α increasing the temperature.
- В decreasing the concentrations of the reactants.
- C decreasing the total volume of the reacting mixture.
- D increasing the total volume of the reacting mixture.
- Ê using a suitable catalyst.
- 5. The following mechanism has been proposed for a reaction.

Step (a)
$$NO_2(g) + F_2(g) \rightarrow NO_2F(g) + F(g)$$
 slow

Step (b)
$$NO_2(g) + F(g) \rightarrow NO_2F(g)$$

fast

Which statement is **NOT** consistent with this proposed mechanism?

- The overall reaction is $2NO_2(g) + F_2(g) \rightarrow 2NO_2F(g)$ Α
- \checkmark F is a reaction intermediate. В
- © D The reaction is second order.
- / The energy of activation for step (a) is higher than that for step (b).
- The rate law for the reaction is $R = k[NO_2]^2[F_2]$ Ε

- 6. The following elementary steps have been proposed for a reaction.
 - a) $2\text{Co}^{2+} + \text{H}_2\text{O} + \text{OCl}^- \rightarrow 2\text{Co}^{3+} + 2\text{OH}^- + \text{Cl}^-$
 - b) $2\text{Co}^{3+} + 2\text{OH}^{-} \rightarrow 2\text{Co}^{2+} + \text{H}_2\text{O} + \frac{1}{2}\text{O}_2$

The catalyst in this process is

- A Co²⁺
- B Co³⁺
- C Cl
- D OCI
- E OH
- 0.12 mol of SO₂ and 0.10 mol of O₂ were introduced into a 1 dm³ vessel at constant temperature. When the system reached equilibrium, 0.08mol of SO₃ was present. The reaction is: 2SO₂(g) + O₂(g)

 ≥ 2SO₃(g). Which set of values shows the concentration of each gas at equilibrium?

	[SO ₂]/moldm ⁻³	[O ₂]/moldm ⁻³	[SO ₃]/moldm ⁻
A	0.04	0.06	0.08
В	0.04	0.02	0.08
C	0.08	0.06	0.08
D	0.02	0.03	0.04
E	0.02	0.15	0.04

- 8. At a given temperature, T, some PCl_{5} , at an initial concentration of 1.0 M, was placed in a container and allowed to reach equilibrium. It was found that the PCl_{5} was 20% dissociated into PCl_{3} and Cl_{2} at equilibrium. K_{c} for the process: $PCl_{5}(g) \rightleftharpoons PCl_{3}(g) + Cl_{2}(g)$ at temperature, T, is
- A 0.20
- B 0.025
- C 0.05
- D 3.20
- E 4.0
- 9. At 298K, K_c for the process $Si(s) + O_2(g) \rightleftharpoons SiO_2(s)$ is $2x10^{142}$. Which of the following **CANNOT** be deduced from the data?
 - A $K_c = 1/[O_2]$
 - B Equilibrium position lies far to the right.
 - C When silicon and oxygen react, the limiting reagent is almost completely used up.
 - D The rate of the reaction between silicon and oxygen to form silicon dioxide is extremely fast.
 - E K_p for the reverse process is pO_2 .
- 10. The equilibrium constant for the reaction $P(aq) \rightleftharpoons Q(aq)$ is 3.75×10^{-7} . Which of the following statements is **TRUE**?
- A The equilibrium concentration of P is less than that of Q.
- B The equilibrium concentration of P is greater than that of Q.
- C Adding a suitable catalyst will increase the equilibrium concentration of P.
- D Adding a catalyst will increase the value of the equilibrium constant.
- E Adding more P will increase the value of the equilibrium constant.

- 11. Which of the following **CANNOT** upset the equilibrium position of the system $NH_4Cl(s) \rightleftharpoons NH_3(g) + Cl_2(g)$?
- A Increasing the mass of ammonium chloride.
- B Increasing the temperature.
- C Decreasing the temperature.
- D Increasing the volume of the containing vessel.
- E Adding some chlorine gas without changing the volume of the containing vessel.
- 12. Consider the process $C_2H_4(g) + H_2(g) \rightleftharpoons C_2H_6(g)$ $\Delta H = -137 \text{ kJ}$ at equilibrium.

The value of K_c can be increased by

- A Using a suitable catalyst.
- B Adding some H₂ to the equilibrium mixture.
- C Increasing the concentration of C_2H_6 .
- D Decreasing the temperature.
- E Decreasing the volume of the container.
- 13. When the system: $NH_4CONH_2(s) \rightleftharpoons 2NH_3(g) + CO(g)$ is at equilibrium at 298K, the total pressure is 0.114atm. K_p for the system is
- A 0.038
- B 0.076
- C 1.48x10⁻³
- D 3.51x10⁻³
- E $2.19x10^{-4}$
- 14. For the reaction $PCl_5(g) \rightleftharpoons PCl_3(g) + Cl_2(g)$, $K_p = 1.7$ at 298K. Five systems were set up with the initial partial pressure of each gas as shown in the table. In which system would the **reverse** reaction occur to establish equilibrium?

Initial partial pressure /atm

	PCI_5	PCl_3	Cl_2
Α	1	1	1
В	2	2	2
C	1	0.5	1.5
D	2	2	1
E	3	2	2

- 15. According to the Bronsted-Lowry definition, an acid is a substance which donates a
- A hydrogen atom.
- B hydrogen ion.
- C hydrogen molecule.
- D hydride ion.
- E hydroxide ion.
- 16. Which does **NOT** constitute an acid/base conjugate pair?
- A H_2SO_4/SO_4^{2-}
- B NH₃/NH₂
- C NH_4^+/NH_3
- D H_3O^+/H_2O
- E HNO₂/NO₂
- 17. Which is **NOT** a strong acid?
- A HCl
- B HClO₄
- C HNO₃
- D HNO₂
- E HI

Chemistry 225 Final Examination Semester 01-2002 Page 5 of 11

18.	Which set shows the substances in order of <u>increasing</u> acid strength? A HClO ₄ , HClO ₃ , HClO ₂ B H ₂ SO ₄ , H ₂ SO ₃ , HSO ₄ C HCl, HBr, HF D HF, H ₂ O, NH ₃ E HPO ₄ ² , H ₂ PO ₄ , H ₃ PO ₄			
19. A B C D	The acidity constant for an acid , HA, is 3.5×10^{-6} . The pK _b of its conjugate base is 5.5×10^{-6} . The pK _b of its conjugate base is $2.9 \times 10^{-9} \times 10^{-14} \times 10^{-14}$			
20. A B C D E	Which salt would be expected to produce a solution with the lowest pH? Assume all solutions have the same molar concentration. NaCl MgCl $_2$ CrCl $_3$ CaCl $_2$ BaCl $_2$			
21. A B C D	Which statement is usually true of an acid/base indicator? It is neither an acid nor a base. It always changes colour at pH 7. It always changes colour at a pH above 7. It always changes colour at a pH below 7. It is at the mid point of its colour change when pH = pK of the indicator.			
Ques	tions 22 to 27 refer to the following solutions.			
	A 1x10 ⁻⁴ M HClO ₄ B 1x10 ⁻⁴ M NaOCl C 1x10 ⁻⁴ M FeCl ₃ D 1x10 ⁻⁴ M NaCl E 1x10 ⁻⁴ M NaOH			
Selec	t from A to E,			
22. 23. 24. 25. 26. 27.	The solution which would have the lowest pH. The solution which would have the highest pH. The solution which would have a pH closest to 7. The solution which would have a pH between 4 and 7. The solution which would have a pH between 7 and 10. The solution which would form a blood red complex with potassium thiocyanate solution.			
28.	The solubility of barium sulphate (BaSO ₄) is 1.41x10 ⁻⁴ moldm ⁻³ . The solubility product of this compound is			
A B C D	2.82 x 10 ⁻⁴ 1.19 x 10 ⁻² 1.99 x 10 ⁻⁸ 7.05 x 10 ⁻⁵ 2.82 x 10 ⁻⁸			

Questions 29 and 30 require the following information:

The solubility product of PbI₂ is 7.9×10^{-9} .

- 29. The solubility of PbI₂ in water is, in moldm⁻³,
- A 1.25×10^{-3}
- 1.99×10^{-3} В
- C 8.89×10^{-5}
- 1.98 x 10⁻⁹ D
- 3.95 x 10⁻⁹ Ε
- 30. The solubility of PbI₂ in 0.10M NaI is, in moldm⁻³,
- 7.9×10^{-11} Α
- 7.9×10^{-10} В
- 7.9 x 10⁻⁹ C
- 7.9 x 10⁻⁸ D
- Ε 7.9×10^{-7}
- 31. In which compound does hydrogen carry an oxidation number of -1?
 - A NH₄Cl
 - В NaH
 - C H_2O_2
 - D KHCO₃
 - E HBr
- 32. Which is **NOT** a redox reaction?
 - Α $Zn + H_2SO_4 \rightarrow ZnSO_4 + H_2$
 - В $Cu + 2H_2SO_4 \rightarrow CuSO_4 + SO_2 + 2H_2O$
 - C $CaCO_3 \rightarrow CaO + CO_2$
 - D $2NBr_3 + H_2O \rightarrow N_2 + 4Br^2 + 2HOBr$
 - Ε $XeF_2 + 2Cl \rightarrow Xe + 2F + Cl_2$
- 33. Which is a disproportionation reaction?
 - $SO_2 + H_2O \rightarrow H_2SO_3$ A
 - В $CH_4 + 2O_2 \rightarrow CO_2 + 2 H_2O$
 - C $3 \text{ NO}_2 + \text{H}_2\text{O} \rightarrow 2 \text{ HNO}_3 + \text{NO}$
 - $2 \text{ KMnO}_4 + 5 \text{ SO}_2 + 2 \text{ H}_2\text{O} \rightarrow 2 \text{ MnSO}_4 + \text{ K}_2\text{SO}_4 + 2 \text{ H}_2\text{SO}_4$ D
 - $S_2O_8^{2-} + 2 I^- \rightarrow 2 SO_4^{2-} + I_2$ E
- 34. Which set shows sulphur in order of INCREASING oxidation number?
- A HS', H₂SO₄, SO₂
- S, H₂S, SO₂ В
- H₂S, HSO₃, HSO₄. HSO₄, SO₃², S. C
- D
- Ε SO₃, SO₂, S
- 35. Which statement is FALSE for a voltaic cell?
- Α In the external circuit, the current consists of a flow of electrons.
- The electrolyte is often an aqueous solution. В
- \mathbf{C} The current consists of a flow of ions through the electrolyte.
- D Oxidation occurs at the positive electrode.
- Ε A redox reaction takes place in the cell.

SECTION B: Answer ALL questions in the spaces provided in the question paper.

Use the following information where appropriate:

$$R = 8.31 \text{ J mol}^{-1} \text{ K}^{-1} = 0.082 \text{ atm dm}^3 \text{ mol}^{-1} \text{ K}^{-1}$$

- 1. The rate law for the reaction: $2P + Q \rightarrow 3R$ is $R = k [P] [Q]^2$ with a rate constant of 1.3 x 10^{-3} M⁻² s⁻¹ at 298 K.
 - a] Find the rate of the reaction the instant 30.0cm³ of 0.20 M P is mixed with 20.0cm³ of 0.25 M Q at 298 K. [2 marks]

- b] What is the value of the *rate constant* if the concentration of P is doubled and the concentration of Q is kept constant at 298 K? [1mark]
- c] The Arrenhius equation states that $k = Ae^{-Ea/RT}$. State two ways in which the value of k can be increased for any given process.
- 2. The equilibrium constant, K_p , for the dissociation of dinitrogen tetroxide to nitrogen dioxide is 0.14 at 298K. The reaction is: $N_2O_4(g) \rightleftharpoons 2NO_2(g)$.
 - a] Find the equilibrium partial pressure of each gas when $0.015 \text{ mol of } N_2O_4$ is admitted into a 1.50 dm^3 vessel at 298 K and the system reaches equilibrium. [5 marks]

- b] Find the total pressure of the system at equilibrium. [1 mark]
- c] What effect, if any, will the addition of 0.01mol of an inert gas have on the equilibrium position if the volume is kept constant? **Show your reasoning.** [2 marks]
- d] What effect, if any, will the addition of 0.01mol of an inert gas have on the equilibrium position if the total pressure is kept constant? **Show your reasoning.** [2 marks]

3. Use the following information wherever necessary.

$$K_w = 1.0 \times 10^{-14}$$

 $K_a (NH_4^+) = 6.3 \times 10^{-10}$

Find the pH of

- a] 0.20 M HCl [1 mark]
- b] 0.20 M NaOH [1 mark]
- c] 0.20 M NH_3 [3 marks]

- d] a mixture of 20.0 cm 3 of 0.20 M HCl + 20.0 cm 3 of 0.20 M NaOH. [1 mark]
- f] a mixture of 30.0 cm^3 of $0.20 \text{ M HCl} + 20.0 \text{ cm}^3$ of 0.20 M NaOH. [2 marks]

g] a mixture of 20.0 cm 3 of 0.20 M HCl + 30.0 cm 3 of 0.20 M NaOH. [2 marks]

- h] a mixture of 20.0 cm 3 of 0.20 M HCl + 10.0 cm 3 of 0.20 M NH $_{3}$. [2 marks]
- i] a mixture of 20.0 cm 3 of 0.20 M HCl + 20.0 cm 3 of 0.20 M NH₃. [3 marks]

j] a mixture of 20.0 cm 3 of 0.20 M HCl + 30.0 cm 3 of 0.20 M NH₃. [3 marks]

4. Use the following table of standard redox potentials wherever necessary.

	E^0/V
$Cl_2(g)+2e^- \rightarrow 2Cl^-(aq)$	+1.36
$Ag^{+}(aq) + e^{-} \rightarrow Ag(s)$	+0.80
$Fe^{3+}(aq) + e^{-} \rightarrow Fe^{2+}(aq)$	+0.77
$2H^+(aq) + 2e^- \rightarrow H_2(g)$	0.00
$Fe^{3+}(aq) + 3e^{-} \rightarrow Fe(aq)$	-0.036
$Fe^{2+}(aq) + 2e^{-} \rightarrow Fe(s)$	-0.44

Hydrogen gas can be prepared by the reaction of hydrochloric acid on iron metal.

- a] i] Write an ionic equation for the reaction. [1 mark]
 - ii] This reaction can be made to take place in a galvanic cell.

 Draw a fully labeled diagram of a **standard** galvanic cell in which this reaction takes place. Show the direction of flow of electrons and the polarity of the electrodes. [5 marks]

- Chemistry 225 Final Examination Semester 01-2002
 Page 11 of 11
 - b] i] Find the standard cell potential for a cell in which the reaction: $Ag^+(aq) \, + Fe^{2+}(aq) \ensuremath{\rightleftharpoons} Ag(s) + Fe^{3+}(aq) \ \ \, \text{takes place}. \qquad [1 \text{ mark}]$
 - ii] Given the Nernst Equation: $E = E^0 \frac{0.059}{n} \log Q$,

Find K_c for the process: $Ag^+(aq) + Fe^{2+}(aq) \rightleftharpoons Ag(s) + Fe^{3+}(aq)$ [3 marks]

5. a] Acidified potassium dichromate($K_2Cr_2O_7$) oxidizes iron(III) in solution whilst it is being reduced to Cr^{3^+} . Derive a balanced **ionic** equation for the reaction. [3 marks]

b] Alkaline potassium chlorate(KClO₃) solution oxidizes hydrazine (N₂H₄) to nitrogen monoxide(NO) whilst being reduced to potassium chloride. Derive a balanced <u>ionic</u> equation for the reaction . [3 marks]

END OF EXAMINATION