\qquad
\qquad .Section.

You may use the following information wherever necessary:
a) $\quad \mathrm{R}=8.31 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}=0.0821 \mathrm{~atm} \mathrm{dm} \mathrm{mol}^{-1} \mathrm{~K}^{-1}=0.0821 \mathrm{~atm} \mathrm{~L} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}$
b) $\quad k=\mathrm{Ae}^{-\mathrm{E} a / \mathrm{RT}}$
c) $\ln \frac{k_{2}}{k_{1}}=\frac{E_{a}}{R} \times \frac{\left(T_{2}-T_{1}\right)}{T_{1} T_{2}}$
d) $\ln \frac{[A]_{t}}{[A]_{0}}=-k t$
e) $\mathrm{t}_{1 / 2}=\frac{\ln 2}{k}=\frac{0.693}{k}$
f) $\quad K_{p}=K_{c}(0.0821 T)^{\Delta \mathrm{n}(\mathrm{gas})}$
g) $\quad \mathrm{K}_{\mathrm{w}}=1.0 \times 10^{-14}$ at 298 K
h) $\quad \mathrm{K}_{\mathrm{a}}\left(\mathrm{CH}_{3} \mathrm{COOH}\right)=1.8 \times 10^{-5}$
i) $x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$
j) $\mathrm{pH}=\mathrm{pK}_{\mathrm{a}}+\log \frac{\text { [base }]}{\text { [acid }]}$
k) $\mathrm{E}=\mathrm{E}^{\mathrm{o}}-\frac{0.059}{n} \log Q$

Section A: Multiple Choice

Select the best answer for each question and shade the letter corresponding to the answer on the answer sheet provided.

Questions 1-3

The reaction $2 \mathrm{NO}_{2}{ }^{-}(\mathrm{aq})+4 \mathrm{H}^{+}+2 \mathrm{I}^{-}(\mathrm{aq}) \rightarrow \mathrm{I}_{2}+2 \mathrm{NO}(\mathrm{g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$ is first order in nitrite ion and iodide ion and second order in hydrogen ion.

1. The rate law for the reaction is

A	Rate $=k\left[\mathrm{NO}_{2}^{-}\right]^{2}\left[\mathrm{H}^{+}\right]\left[\mathrm{I}^{-}\right]^{2}$
B	Rate $=k\left[\mathrm{NO}_{2}^{--}\right]^{2}\left[\mathrm{H}^{+}\right]\left[\mathrm{I}^{-}\right]$
C	Rate $=k\left[\mathrm{NO}_{2}^{-}\right]\left[\mathrm{H}^{+}\right]^{2}\left[\mathrm{I}^{-}\right]$
D	Rate $=k\left[\mathrm{NO}_{2}^{-}\right]\left[\mathrm{H}^{+}\right]\left[\mathrm{I}^{-}\right]^{2}$
E	Rate $=k\left[\mathrm{NO}_{2}^{-}\right]^{2}\left[\mathrm{H}^{+}\right]^{4}\left[\mathrm{I}^{-}\right]^{2}$

2. If the rate of the reaction is expressed in $\mathrm{M} \mathrm{s}^{-1}$, the correct unit for the rate constant, k, is

A	$\mathrm{M}^{-2} \mathrm{~s}^{-1}$
B	$\mathrm{M}^{2} \mathrm{~s}^{-1}$
C	$\mathrm{M} \mathrm{s}^{-1}$
D	$\mathrm{M}^{-2} \mathrm{~s}^{-2}$
E	$\mathrm{M}^{-3} \mathrm{~s}^{-1}$

3. By what factor would the rate of the reaction change if the concentrations of all the reactants are doubled?

A	$1 / 2$
B	2
C	4
D	8
E	16

4. Ammonia can be oxidized according to the equation:

$$
4 \mathrm{NH}_{3}(\mathrm{~g})+5 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 4 \mathrm{NO}(\mathrm{~g})+6 \mathrm{H}_{2} \mathrm{O}(\mathrm{~g})
$$

If in a particular reaction the $\Delta[\mathrm{NO}]$ is $0.006 \mathrm{~mol} \mathrm{dm}^{-3}$, then $\Delta\left[\mathrm{O}_{2}\right]$, in $\mathrm{mol} \mathrm{dm}^{-3}$, is
A $-5 / 4 \times 0.006$
B $\quad 5 / 4 \times 0.006$
C $\quad-4 / 5 \times 0.006$
D $\quad 4 / 5 \times 0.006$
E $\quad 4 \times 5 \times 0.006$
5. Which statement best explains the observation that reaction rates increase when temperature is increased?
A At a higher temperature the energy of activation is reduced.
B At a higher temperature the energy of activation is increased.
C At a higher temperature the concentration of the reactants is higher.
D At a higher temperature a larger fraction of reactant molecules have sufficient energy to form the transition state.

E At a higher temperature there is no need to form the transition state.
6. Which statement about catalysts is NOT true?

A A catalyst has no effect on the enthalpy change for the reaction which it catalyses.
B A catalyst does not participate in the reaction which it catalyses.
C Catalysts are specific in their action.
D A catalyst changes the rate of the forward and reverse reactions for a reversible reaction by the same factor.

E A catalyst does not affect equilibrium position for a reversible reaction.
7. The following mechanism has been proposed for a reaction:

Step 1: $\quad \mathrm{H}_{2} \mathrm{O}_{2}(\mathrm{aq})+\mathrm{I}^{-}(\mathrm{aq}) \rightarrow \quad \mathrm{H}_{2} \mathrm{O}(\mathrm{l})+\mathrm{IO}^{-}(\mathrm{aq}) \quad$ slow
Step 2: $\mathrm{IO}^{-}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}_{2}(\mathrm{aq}) \rightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{l})+\mathrm{O}_{2}(\mathrm{~g})+\mathrm{I}^{-}(\mathrm{aq}) \quad$ fast
Which statement is NOT consistent with this proposed mechanism?
A The overall reaction is: $2 \mathrm{H}_{2} \mathrm{O}_{2}(\mathrm{aq}) \rightarrow 2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})+\mathrm{O}_{2}(\mathrm{~g})$
B $\quad \mathrm{IO}^{-}$is a reactive intermediate.
C $\quad I^{-}$is a catalyst.
D The reaction is first order with respect to the catalyst.
E The reaction is second order with respect to $\mathrm{H}_{2} \mathrm{O}_{2}$.
8. 0.24 mol of NO_{2} and 0.20 mol of Cl_{2} were introduced into a $1 \mathrm{dm}^{3}$ vessel at constant temperature. When the system reached equilibrium, 0.16 mol of NOCl was present.

The reaction is: $2 \mathrm{NO}_{2}(\mathrm{~g})+\mathrm{Cl}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NOCl}(\mathrm{g})$.
Which set of values shows the concentration of each gas at equilibrium?

	$\left[\mathbf{N O}_{2}\right] / \mathbf{m o l d m}^{-3}$	$\left[\mathbf{C l}_{2}\right] / \mathbf{m o l d m}^{-3}$	$[\mathbf{N O C l}] / \mathbf{m o l d m}^{-3}$
A	0.08	0.12	0.16
B	0.08	0.04	0.16
C	0.08	0.08	0.16
D	0.16	0.08	0.16
E	0.12	0.12	0.16

9. The equilibrium constant for the reaction $\mathrm{P}(\mathrm{aq}) \rightleftharpoons \mathrm{Q}(\mathrm{aq})$ is 3.2×10^{-5}.

Which of the following statements is TRUE?
A The equilibrium concentration of P is less than that of Q .
B The equilibrium concentration of P is greater than that of Q .
C Adding a suitable catalyst will increase the equilibrium concentration of Q .
D Adding a catalyst will increase the value of the equilibrium constant.
E Adding more P to an equilibrium mixture of P and Q will increase the value of the equilibrium constant.
10. For which equilibrium system, at constant temperature, will decreasing the volume not cause the equilibrium position to shift?

A $\quad 2 \mathrm{CO}(\mathrm{g})+\mathrm{O}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{CO}_{2}(\mathrm{~g})$
$\mathrm{B} \quad \mathrm{C}(\mathrm{s})+\mathrm{O}_{2}(\mathrm{~g}) \rightleftharpoons \mathrm{CO}_{2}(\mathrm{~g})$
C $\quad \mathrm{COCl}_{2}(\mathrm{~g}) \rightleftharpoons \mathrm{CO}(\mathrm{g})+\mathrm{Cl}_{2}(\mathrm{~g})$
D $\quad 2 \mathrm{NH}_{3}(\mathrm{~g}) \rightleftharpoons \mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g})$
$\mathrm{E} \quad \mathrm{CaCO}_{3}(\mathrm{~s}) \rightleftharpoons \mathrm{CaO}(\mathrm{s})+\mathrm{CO}_{2}(\mathrm{~g})$
11. Consider the process: $\mathrm{Fe}_{2} \mathrm{O}_{3}(\mathrm{~s})+3 \mathrm{H}_{2}(\mathrm{~g}) \rightleftharpoons 3 \mathrm{H}_{2} \mathrm{O}(\mathrm{g})+2 \mathrm{Fe}(\mathrm{s}) \quad \Delta \mathrm{H}=+98.7 \mathrm{~kJ}$

Which statement is NOT true for this system?
A $\quad \mathrm{K}_{\mathrm{p}}=\mathrm{K}_{\mathrm{c}}$ at a stated temperature.
B Addition of some H_{2} to an equilibrium mixture will cause equilibrium to shift to the right.
C Increasing the mass of $\mathrm{Fe}_{2} \mathrm{O}_{3}$ will cause equilibrium to shift to the right.
D The value of K_{p} can be increased by increasing the temperature.
E Decreasing the volume of the container does not upset equilibrium.
\qquad
12. For the reaction $\mathrm{PCl}_{5}(\mathrm{~g}) \rightleftharpoons \mathrm{PCl}_{3}(\mathrm{~g})+\mathrm{Cl}_{2}(\mathrm{~g}), \mathrm{K}_{\mathrm{p}}=1.7$ at 298 K . Five systems were set up with the initial partial pressure of each gas as shown in the table. In which system would the forward reaction occur to establish equilibrium?

	$p_{i} \mathrm{PCl}_{5} / \mathrm{atm}$	$p_{i} \mathrm{PCl}_{3} / \mathrm{atm}$	$p_{i} \mathrm{Cl}_{2} / \mathrm{atm}$
A	1	2	1
B	2	2	2
C	1	1	2
D	2	2	3
E	3	2	2

13. According to the Bronsted-Lowry definition, a base is a species which

A donates a hydrogen atom.
B donates a hydrogen ion.
C accepts a hydrogen atom.
D accepts a hydrogen ion.
E accepts a hydroxide ion.
14. Which does NOT constitute an acid/base conjugate pair?

A $\quad \mathrm{H}_{2} \mathrm{CO}_{3} / \mathrm{HCO}_{3}^{-}$
B $\quad \mathrm{NH}_{3} / \mathrm{NH}_{2}{ }^{-}$
C $\quad \mathrm{NH}_{4}{ }^{+} / \mathrm{NH}_{3}$
D $\quad \mathrm{H}_{3} \mathrm{O}^{+} / \mathrm{OH}^{-}$
E $\quad \mathrm{HNO}_{2} / \mathrm{NO}_{2}$
15. Which is a weak acid?

A $\quad \mathrm{HI}$

B $\quad \mathrm{HClO}_{4}$
C $\quad \mathrm{HBr}$
D $\quad \mathrm{HF}$
E $\quad \mathrm{HCl}$
16. Which set shows the substances in order of increasing acid strength?

A $\mathrm{HClO}, \mathrm{HClO}_{2}, \mathrm{HClO}_{3}$,
B $\quad \mathrm{H}_{2} \mathrm{SO}_{4}, \mathrm{H}_{2} \mathrm{SO}_{3}, \mathrm{HSO}_{4}^{-}$
C $\mathrm{HCl}, \mathrm{HBr}, \mathrm{HF}$
D $\quad \mathrm{HF}, \mathrm{H}_{2} \mathrm{O}, \mathrm{NH}_{3}$
E $\quad \mathrm{HPO}_{4}{ }^{2-}, \mathrm{H}_{3} \mathrm{PO}_{4}, \mathrm{H}_{2} \mathrm{PO}_{4}{ }^{-}$,
\qquad
17. The acidity constant for an acid, HA , is 2.5×10^{-5}. The pK_{b} of its conjugate base is closest to

A	4.6
B	9.4
C	4.0×10^{-10}
D	1.0×10^{-14}
E	14

18. Assuming all of the following solutions have the same molar concentration, which one would be expected to have the lowest pH ?

A $\quad \mathrm{FeCl}_{3}$
B $\quad \mathrm{FeCl}_{2}$
C $\quad \mathrm{CaCl}_{2}$
D $\quad \mathrm{KCl}$
E $\quad \mathrm{BaCl}_{2}$

Questions 19-23 refer to the following titrations:
A The titration of $20.0 \mathrm{~cm}^{3}$ of 0.1 M HCl with 0.1 M NaOH
B \quad The titration of $20.0 \mathrm{~cm}^{3}$ of 0.1 M HCl with $0.1 \mathrm{M} \mathrm{NH}_{3}$
C \quad The titration of $20.0 \mathrm{~cm}^{3}$ of $0.1 \mathrm{M} \mathrm{CH}_{3} \mathrm{COOH}$ with 0.1 M NaOH
D The titration of $20.0 \mathrm{~cm}^{3}$ of 0.1 M KOH with 0.1 M HCl
$\mathrm{E} \quad$ The titration of $20.0 \mathrm{~cm}^{3}$ of $0.1 \mathrm{M} \mathrm{HNO}_{3}$ with 0.1 M KOH

For which titration
19. would there be a decreases in pH as the titrant is added?
20. would the pH be greater than 7 at the equivalence point?
21. would the pH be lower than 7 at the equivalence point?
22. would phenolphthalein (pH range $8.3-10.0$) be unsuitable as an indicator?
23. would bromocresol green (pH range $3.8-5.4$) be unsuitable as an indicator?
24. In which compound does hydrogen carry an oxidation number of -1 ?

A $\quad \mathrm{NH}_{4} \mathrm{NO}_{3}$
B LiH

C $\quad \mathrm{H}_{2} \mathrm{O}_{2}$

D $\quad \mathrm{NaHSO}_{4}$

E HF
\qquad
25. In which compound does oxygen carry an oxidation number of -1 ?

A $\quad \mathrm{NaHSO}_{4}$
B $\quad \mathrm{NH}_{4} \mathrm{NO}_{3}$
C $\quad \mathrm{H}_{2} \mathrm{O}_{2}$
D $\quad \mathrm{Fe}_{2} \mathrm{O}_{3}$
$\mathrm{E} \quad \mathrm{FeO}$
26. In which compound does oxygen carry an oxidation number of +2 ?

A $\quad \mathrm{F}_{2} \mathrm{O}$
B $\quad \mathrm{NH}_{4} \mathrm{NO}_{3}$
C $\quad \mathrm{KHSO}_{4}$
D $\quad \mathrm{CuO}$

E $\quad \mathrm{Cu}_{2} \mathrm{O}$
27. Which is NOT a redox reaction?

A $\quad \mathrm{Zn}+\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \mathrm{ZnSO}_{4}+\mathrm{H}_{2}$
B $\quad \mathrm{Cu}+2 \mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \mathrm{CuSO}_{4}+\mathrm{SO}_{2}+2 \mathrm{H}_{2} \mathrm{O}$
C $\quad 2 \mathrm{NBr}_{3}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{N}_{2}+4 \mathrm{Br}^{-}+2 \mathrm{HOBr}$
D $\quad \mathrm{ZnCO}_{3} \rightarrow \mathrm{ZnO}+\mathrm{CO}_{2}$
$\mathrm{E} \quad \mathrm{XeF}_{2}+2 \mathrm{Cl}^{-} \rightarrow \mathrm{Xe}+2 \mathrm{~F}^{-}+\mathrm{Cl}_{2}$
28. Which is a disproportionation reaction?

A $\quad \mathrm{SO}_{2}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{H}_{2} \mathrm{SO}_{3}$
B $\quad \mathrm{CH}_{4}+2 \mathrm{O}_{2} \rightarrow \mathrm{CO}_{2}+2 \mathrm{H}_{2} \mathrm{O}$
C $\quad 3 \mathrm{NO}_{2}+\mathrm{H}_{2} \mathrm{O} \rightarrow 2 \mathrm{HNO}_{3}+\mathrm{NO}$
D $\quad 2 \mathrm{KMnO}_{4}+5 \mathrm{SO}_{2}+2 \mathrm{H}_{2} \mathrm{O} \rightarrow 2 \mathrm{MnSO}_{4}+\mathrm{K}_{2} \mathrm{SO}_{4}+2 \mathrm{H}_{2} \mathrm{SO}_{4}$
$\mathrm{E} \quad \mathrm{S}_{2} \mathrm{O}_{8}{ }^{2-}+2 \mathrm{I}^{-} \rightarrow 2 \mathrm{SO}_{4}{ }^{2-}+\mathrm{I}_{2}$
29. Which quantities are conserved in a redox reaction?

A Mass only.
B Charge only.
C Oxidation number.
D Neither mass nor charge.
E Both mass and charge.
\qquad
30. The e.m.f. of the cell: $\mathrm{Pt}(\mathrm{s})\left|\mathrm{H}_{2}(\mathrm{~g})\right| \mathrm{HCl}(\mathrm{aq}) \| \mathrm{CuSO}_{4}(\mathrm{aq}) \mid \mathrm{Cu}(\mathrm{s})$ does $\underline{\text { NOT }}$ depend on

A temperature.
B the size of the copper electrode.
C the concentration of HCl .
D the concentration of CuSO_{4}.
$\mathrm{E} \quad$ the pressure of H_{2}.
31. When the contents of an electrochemical cell are at equilibrium, the e.m.f. of the cell

A is zero.
B is at a maximum.
C is negative.
D is positive.
E cannot be measured.

Questions 32-35 concern the following graphs:

A

B

C

D

E

Select, from A to E, the graph which best represents:
32. Rate of reaction versus concentration of X for a reaction which is zero order in X .
33. Rate of reaction versus concentration of X for a reaction which is first order in X .
34. Rate of reaction versus time for a reversible process which attains equilibrium after some time.
35. The titration curve for the titration of a base with an acid.
\qquad

SECTION B: Answer ALL questions in the spaces provided on the question paper.

Remember to include units in your answers wherever appropriate.

1. The following data were obtained for the reaction:
$6 \mathrm{I}^{-}(\mathrm{aq})+\mathrm{BrO}_{3}^{-}(\mathrm{aq})+6 \mathrm{H}^{+}(\mathrm{aq}) \rightarrow 3 \mathrm{I}_{2}(\mathrm{aq})+\mathrm{Br}^{-}(\mathrm{aq})+3 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$

Experiment	Initial $[\mathrm{I}] / \mathrm{M}$	Initial $\left[\mathrm{BrO}_{3}^{-}\right] / \mathrm{M}$	Initial $\left[\mathrm{H}^{+}\right] / \mathrm{M}$	Initial Rate of I_{2} formation/Ms ${ }^{-1}$
1	0.0020	0.0080	0.020	8.89×10^{-5}
2	0.0040	0.0080	0.020	1.78×10^{-4}
3	0.0020	0.0160	0.020	1.78×10^{-4}
4	0.0020	0.0080	0.040	3.56×10^{-4}

a) Derive the rate law for the reaction.
b) i) Use the data from experiment 1 to find the value of the rate constant, k, stating its correct units.
ii) What would be the value of the rate constant if the concentration of all reactants were doubled?
c) What effect, if any, would doubling the concentration of the reactants have on the energy of activation for the process?
d) What effect, if any, would increasing the temperature of the reaction mixture have on the energy of activation for the process?
e) What effect, if any, would increasing the temperature of the reaction mixture have on the value of the rate constant for the process?
f) What effect, if any, would using a catalyst have on the energy of activation for the process?
2. The activation energy for the reaction: $2 \mathrm{~N}_{2} \mathrm{O}(\mathrm{g}) \rightarrow 2 \mathrm{~N}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g})$ is $200 \mathrm{~kJ} \mathrm{~mol}^{-1}$.

How many times faster would this reaction proceed at $230^{\circ} \mathrm{C}$ than at $200^{\circ} \mathrm{C}$?
3. The first order rate constant for the decomposition of a certain hormone in water at $25^{\circ} \mathrm{C}$ is 0.0342 day $^{-1}$.
a) If a 0.0200 M solution of the hormone is stored for 40 days, what will be its concentration at the end of that period?
c) How many days will it take for a sample of the hormone to be 65% decomposed? [2]
4. Use the given K_{p} values for the processes X and Y to find K_{p} for the process Z .

Process X: $2 \operatorname{BrF}(\mathrm{~g}) \rightleftharpoons \mathrm{Br}_{2}(\mathrm{~g})+\mathrm{F}_{2}(\mathrm{~g})$
$\mathrm{K}_{\mathrm{p}}=\mathrm{K}_{\mathrm{x}}=4.57 \times 10^{-5}$
Process Y: $\operatorname{Br}_{2}(\mathrm{~g})+3 \mathrm{~F}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{BrF}_{3}(\mathrm{~g})$
$\mathrm{K}_{\mathrm{p}}=\mathrm{K}_{\mathrm{y}}=5.29$
Process Z: $\mathrm{BrF}_{3}(\mathrm{~g}) \rightleftharpoons \mathrm{BrF}(\mathrm{g})+\mathrm{F}_{2}(\mathrm{~g})$
$K_{p}=K_{z}$
5. The equilibrium constant, K_{p}, for the dissociation of dinitrogen tetroxide to nitrogen dioxide is 11 at 398 K . The reaction is: $\mathrm{N}_{2} \mathrm{O}_{4}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NO}_{2}(\mathrm{~g})$.
a) Find the equilibrium partial pressure of each gas when $\mathrm{N}_{2} \mathrm{O}_{4}$, at an initial pressure of 1.20 atm , dissociates at 398 K .
b) Find the total pressure of the system at equilibrium.
6. Find the pH of
a) $\quad 0.020 \mathrm{M} \mathrm{NaOH}$
7. Derive a balanced ionic equation for the reaction by writing half equations and then combining them.
8. Use the following table of standard redox potentials wherever necessary.

	$\mathbf{E}^{0} / \mathbf{V}$
$\mathrm{MnO}_{4}^{-}(\mathrm{aq})+8 \mathrm{H}^{+}(\mathrm{aq})+5 \mathrm{e}^{-} \rightarrow \mathrm{Mn}^{2+}(\mathrm{aq})+4 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$	+1.51
$\mathrm{Cl}_{2}(\mathrm{~g})+2 \mathrm{e}^{-} \rightarrow 2 \mathrm{Cl}^{-}(\mathrm{aq})$	+1.36
$\mathrm{Ag}^{+}(\mathrm{aq})+\mathrm{e}^{-} \rightarrow \mathrm{Ag}(\mathrm{s})$	+0.80
$\mathrm{Fe}^{3+}(\mathrm{aq})+\mathrm{e}^{-} \rightarrow \mathrm{Fe}^{2+}(\mathrm{aq})$	+0.77
$\mathrm{NiO}_{2}(\mathrm{~s})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})+2 \mathrm{e}^{-} \rightarrow \mathrm{Ni}(\mathrm{OH})_{2}(\mathrm{~s})+2 \mathrm{OH}^{-}(\mathrm{aq})$	+0.49
$\mathrm{Cu}^{2+}(\mathrm{aq})+2 \mathrm{e}^{-} \rightarrow \mathrm{Cu}(\mathrm{s})$	+0.34
$2 \mathrm{H}^{+}(\mathrm{aq})+2 \mathrm{e}^{-} \rightarrow \mathrm{H}_{2}(\mathrm{~g})$	0.00
$\mathrm{Ni}^{2+}(\mathrm{aq})+2 \mathrm{e}^{-} \rightarrow \mathrm{Ni}(\mathrm{s})$	-0.25
$\mathrm{Fe}^{3+}(\mathrm{aq})+3 \mathrm{e}^{-} \rightarrow \mathrm{Fe}(\mathrm{s})$	-0.036
$\mathrm{Cd}^{2+}(\mathrm{aq})+2 \mathrm{e}^{-} \rightarrow \mathrm{Cd}(\mathrm{s})$	-0.40
$\mathrm{Fe}^{2+}(\mathrm{aq})+2 \mathrm{e}^{-} \rightarrow \mathrm{Fe}(\mathrm{s})$	-0.44
${\mathrm{Cd}(\mathrm{OH})_{2}(\mathrm{~s})+2 \mathrm{e}^{-} \rightarrow \mathrm{Cd}(\mathrm{s})+2 \mathrm{OH}^{-}(\mathrm{aq})}$	-0.81
$\mathrm{Mg}^{2+}(\mathrm{aq})+2 \mathrm{e}^{-} \rightarrow \mathrm{Mg}(\mathrm{s})$	-2.38

a) Rechargeable nickel-cadmium cells are used in calculators and other battery powered devices. The cell reaction is:
$\mathrm{NiO}_{2}(\mathrm{~s})+\mathrm{Cd}(\mathrm{s})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightarrow \mathrm{Ni}(\mathrm{OH})_{2}(\mathrm{~s})+\mathrm{Cd}(\mathrm{OH})_{2}(\mathrm{~s})$.
What is the cell potential of a standard nickel-cadmium cell?
b) The cell notation represents a standard galvanic cell:
$\mathrm{Mg}(\mathrm{s})\left|\mathrm{MgCl}_{2}(\mathrm{aq}) \| \mathrm{FeCl}_{3}(\mathrm{aq}), \mathrm{FeCl}_{2}(\mathrm{aq})\right| \mathrm{Pt}(\mathrm{s})$
i) Write a balanced ionic equation for the cell reaction.
ii) Draw a fully labeled diagram of the galvanic cell. Show the direction of flow of
electrons, the polarity of the electrodes and the concentration of all solutions. [5]
c) i) Find the standard cell potential for a cell in which the reaction:

$$
\begin{equation*}
\mathrm{Ag}^{+}(\mathrm{aq})+\mathrm{Fe}^{2+}(\mathrm{aq}) \rightleftharpoons \mathrm{Ag}(\mathrm{~s})+\mathrm{Fe}^{3+}(\mathrm{aq}) \text { takes place. } \tag{1}
\end{equation*}
$$

ii) \quad Find K_{c} for the process: $\mathrm{Ag}^{+}(\mathrm{aq})+\mathrm{Fe}^{2+}(\mathrm{aq}) \rightleftharpoons \mathrm{Ag}(\mathrm{s})+\mathrm{Fe}^{3+}(\mathrm{aq})$
d) Find the e.m.f of the cell: $\mathrm{Cu}(\mathrm{s})\left|\mathrm{Cu}^{2+}(0.001 \mathrm{M}) \| \mathrm{Cu}^{2+}(0.250 \mathrm{M})\right| \mathrm{Cu}(\mathrm{s})$
e) Explain why hydrochloric acid cannot be used to provide an acid medium with potassium manganate (VII) as an oxidizing agent.

