Chemistry 225 Final Examination 01-2009

Time allowed: 3 hours

Page 1 of 15

Student Name......Student Number.....Section.....

You may use the following information wherever necessary:

a)
$$R = 8.31 \text{ J} \text{ mol}^{-1} \text{ K}^{-1} = 0.0821 \text{ atm } \text{dm}^{3} \text{ mol}^{-1} \text{ K}^{-1} = 0.0821 \text{ atm } \text{L} \text{ mol}^{-1} \text{ K}^{-1}$$

b) $k = \text{Ae}^{-\text{Ea/RT}}$ g) $K_{w} = 1.0 \times 10^{-14} \text{ at } 298 \text{ K}$
c) $\ln \frac{k_{2}}{k_{1}} = \frac{E_{a}}{R} \times \frac{(T_{2} - T_{1})}{T_{1}T_{2}}$ h) $K_{a} (\text{CH}_{3}\text{COOH}) = 1.8 \times 10^{-5}$
i) $x = \frac{-b \pm \sqrt{b^{2} - 4ac}}{2a}$
j) $pH = pK_{a} + \log \frac{[base]}{[acid]}$
e) $t_{1/2} = \frac{\ln 2}{k} = \frac{0.693}{k}$ j) $pH = pK_{a} + \log \frac{[base]}{[acid]}$
k) $E = E^{\circ} - \frac{0.059}{n} \log Q$

Section A: Multiple Choice

Select the best answer for each question and shade the letter corresponding to the answer on the answer sheet provided. [35 marks

Questions 1-3

The reaction $2NO_2^-(aq) + 4 H^+ + 2 I^-(aq) \rightarrow I_2 + 2 NO(g) + 2 H_2O(l)$ is first order in nitrite ion and iodide ion and second order in hydrogen ion.

- 1. The rate law for the reaction is
 - A Rate = $k [NO_2^{-1}]^2 [H^+] [I^{-1}]^2$
 - B Rate = $k [NO_2^{-}]^2 [H^+] [I^-]$
 - C Rate = $k [NO_2^-][H^+]^2[I^-]$
 - D Rate = $k [NO_2^{-}][H^+][I^{-}]^2$
 - E Rate = $k [NO_2^{-}]^2 [H^+]^4 [I^-]^2$
- 2. If the rate of the reaction is expressed in M s⁻¹, the correct unit for the rate constant, k, is
 - A $M^{-2} s^{-1}$
 - B $M^2 s^{-1}$
 - C M s⁻¹
 - D $M^{-2} s^{-2}$
 - E M⁻³ s⁻¹
- 3. By what factor would the rate of the reaction change if the concentrations of all the reactants are doubled?

А	1/2
В	2
С	4
D	8
Е	16

Time allowed: 3 hours

Student Name......Student Number.....Section.....

4. Ammonia can be oxidized according to the equation: $4 \text{ NH}_3(g) + 5 \text{ O}_2(g) \rightarrow 4 \text{ NO}(g) + 6 \text{ H}_2\text{O}(g)$

If in a particular reaction the Δ [NO] is 0.006 mol dm⁻³, then Δ [O₂], in mol dm⁻³, is

- A $-5/4 \times 0.006$
- B $5/4 \times 0.006$
- C $-4/5 \times 0.006$
- D $4/5 \times 0.006$
- E $4 \times 5 \times 0.006$
- 5. Which statement best explains the observation that reaction rates increase when temperature is increased?
 - A At a higher temperature the energy of activation is reduced.
 - B At a higher temperature the energy of activation is increased.
 - C At a higher temperature the concentration of the reactants is higher.
 - D At a higher temperature a larger fraction of reactant molecules have sufficient energy to form the transition state.
 - E At a higher temperature there is no need to form the transition state.
- 6. Which statement about catalysts is **<u>NOT</u>** true?
 - A A catalyst has no effect on the enthalpy change for the reaction which it catalyses.
 - B A catalyst does not participate in the reaction which it catalyses.
 - C Catalysts are specific in their action.
 - D A catalyst changes the rate of the forward and reverse reactions for a reversible reaction by the same factor.
 - E A catalyst does not affect equilibrium position for a reversible reaction.
- 7. The following mechanism has been proposed for a reaction:

Step 1: $H_2O_2(aq) + I^{-}(aq) \rightarrow H_2O(l) + IO^{-}(aq)$ slow Step 2: $IO^{-}(aq) + H_2O_2(aq) \rightarrow H_2O(l) + O_2(g) + I^{-}(aq)$ fast Which statement is <u>NOT</u> consistent with this proposed mechanism? A The overall reaction is: $2 H_2O_2(aq) \rightarrow 2 H_2O(l) + O_2(g)$ B IO^{-} is a reactive intermediate.

- C I^- is a catalyst.
- D The reaction is first order with respect to the catalyst.
- E The reaction is second order with respect to H_2O_2 .

Student Name......Student Number.....Section.....

8. 0.24 mol of NO_2 and 0.20 mol of Cl_2 were introduced into a 1 dm³ vessel at constant temperature. When the system reached equilibrium, 0.16 mol of NOCl was present.

The reaction is: $2 \operatorname{NO}_2(g) + \operatorname{Cl}_2(g) \rightleftharpoons 2\operatorname{NOCl}(g)$.

Which set of values shows the concentration of each gas at equilibrium?

	[NO ₂]/moldm ⁻³	[Cl ₂]/moldm ⁻³	[NOCl]/moldm ⁻³
А	0.08	0.12	0.16
В	0.08	0.04	0.16
С	0.08	0.08	0.16
D	0.16	0.08	0.16
Е	0.12	0.12	0.16

9. The equilibrium constant for the reaction $P(aq) \rightleftharpoons Q(aq)$ is 3.2×10^{-5} .

Which of the following statements is TRUE?

- A The equilibrium concentration of P is less than that of Q.
- B The equilibrium concentration of P is greater than that of Q.
- C Adding a suitable catalyst will increase the equilibrium concentration of Q.
- D Adding a catalyst will increase the value of the equilibrium constant.
- E Adding more P to an equilibrium mixture of P and Q will increase the value of the equilibrium constant.
- 10. For which equilibrium system, at constant temperature, will decreasing the volume <u>not</u> cause the equilibrium position to shift?
 - A $2 \operatorname{CO}(g) + \operatorname{O}_2(g) \rightleftharpoons 2 \operatorname{CO}_2(g)$
 - B $C(s) + O_2(g) \rightleftharpoons CO_2(g)$
 - C $\operatorname{COCl}_2(g) \rightleftharpoons \operatorname{CO}(g) + \operatorname{Cl}_2(g)$
 - D $2 \operatorname{NH}_3(g) \rightleftharpoons \operatorname{N}_2(g) + 3 \operatorname{H}_2(g)$
 - E $CaCO_3(s) \rightleftharpoons CaO(s) + CO_2(g)$

11. Consider the process: $Fe_2O_3(s) + 3H_2(g) \rightleftharpoons 3H_2O(g) + 2Fe(s) \quad \Delta H = +98.7 \text{ kJ}$

Which statement is **<u>NOT</u>** true for this system?

- A $K_p = K_c$ at a stated temperature.
- B Addition of some H_2 to an equilibrium mixture will cause equilibrium to shift to the right.
- C Increasing the mass of Fe_2O_3 will cause equilibrium to shift to the right.
- D The value of K_p can be increased by increasing the temperature.
- E Decreasing the volume of the container does not upset equilibrium.

Student Name	Student Number	Section
--------------	----------------	---------

12. For the reaction $PCl_5(g) \rightleftharpoons PCl_3(g) + Cl_2(g)$, $K_p = 1.7$ at 298K. Five systems were set up with the initial partial pressure of each gas as shown in the table. In which system would the **forward** reaction occur to establish equilibrium?

	<i>p</i> _{<i>i</i>} PCl ₅ /atm	<i>p</i> _{<i>i</i>} PCl ₃ /atm	<i>p_i</i> Cl ₂ /atm
А	1	2	1
В	2	2	2
С	1	1	2
D	2	2	3
E	3	2	2

13. According to the Bronsted-Lowry definition, a **base** is a species which

- A donates a hydrogen atom.
- B donates a hydrogen ion.
- C accepts a hydrogen atom.
- D accepts a hydrogen ion.
- E accepts a hydroxide ion.

14. Which does **<u>NOT</u>** constitute an acid/base conjugate pair?

- A H₂CO₃/ HCO₃⁻
- B NH₃/ NH₂
- C NH_4^+/NH_3
- D H_3O^+/OH^-
- E HNO_2/NO_2^-
- 15. Which is a weak acid?
 - A HI
 - B HClO₄
 - C HBr
 - D HF
 - E HCl
- 16. Which set shows the substances in order of **<u>increasing</u>** acid strength?
 - A HClO, HClO₂, HClO₃,
 - $B \qquad H_2SO_4, H_2SO_3, HSO_4$
 - C HCl, HBr, HF
 - D HF, H_2O , NH_3
 - E $HPO_4^{2-}, H_3PO_4, H_2PO_4^{-},$

Student Name......Student Number.....Section.....

17. The acidity constant for an acid, HA, is 2.5×10^{-5} . The pK_b of its conjugate base is closest to

A 4.6 B 9.4

- C 4.0×10^{-10}
- D 1.0×10^{-14}
- E 14
- 18. Assuming all of the following solutions have the same molar concentration, which one would be expected to have the **lowest** pH?
 - A FeCl₃
 - B FeCl₂
 - C CaCl₂
 - D KCl
 - E BaCl₂

Questions 19-23 refer to the following titrations:

- A The titration of 20.0 cm^3 of 0.1 M HCl with 0.1 M NaOH
- B The titration of 20.0 cm^3 of 0.1M HCl with 0.1 M NH₃
- C The titration of 20.0 cm^3 of 0.1 M CH₃COOH with 0.1 M NaOH
- D The titration of 20.0 cm³ of 0.1M KOH with 0.1 M HCl
- E The titration of 20.0 cm^3 of 0.1M HNO_3 with 0.1 M KOH

For which titration

- 19. would there be a decreases in pH as the titrant is added?
- 20. would the pH be greater than 7 at the equivalence point?
- 21. would the pH be lower than 7 at the equivalence point?
- 22. would phenolphthalein (pH range 8.3 10.0) be unsuitable as an indicator?
- 23. would bromocresol green (pH range 3.8 5.4) be unsuitable as an indicator?

24. In which compound does hydrogen carry an oxidation number of -1?

- A NH₄NO₃
- B LiH
- $C H_2O_2$
- D NaHSO₄
- E HF

Student Name......Student Number.....Section.....

25. In which compound does oxygen carry an oxidation number of -1?

- A NaHSO₄
- B NH₄NO₃
- C H₂O₂
- D Fe_2O_3
- E FeO

26. In which compound does oxygen carry an oxidation number of +2?

- A F₂O
- B NH₄NO₃
- C KHSO₄
- D CuO
- E Cu₂O
- 27. Which is **NOT** a redox reaction?
 - $A \qquad \qquad Zn + \ H_2SO_4 \ \rightarrow \ ZnSO_4 + H_2$
 - $B \qquad Cu + 2H_2SO_4 \rightarrow CuSO_4 + SO_2 + 2H_2O$
 - C $2NBr_3 + H_2O \rightarrow N_2 + 4Br^2 + 2HOBr$
 - D $ZnCO_3 \rightarrow ZnO + CO_2$
 - $E \qquad XeF_2 + 2Cl^- \rightarrow Xe + 2F + Cl_2$
- 28. Which is a disproportionation reaction?
 - A $SO_2 + H_2O \rightarrow H_2SO_3$
 - $B \qquad CH_4 + 2O_2 \rightarrow CO_2 + 2 H_2O$
 - C $3 \text{ NO}_2 + \text{H}_2\text{O} \rightarrow 2 \text{ HNO}_3 + \text{NO}$
 - D 2 KMnO₄ + 5 SO₂ + 2 H₂O \rightarrow 2 MnSO₄ + K₂SO₄ + 2 H₂SO₄
 - $E \qquad S_2 O_8^{2-} + 2 \ I^- \rightarrow 2 \ SO_4^{2-} + I_2$

29. Which quantities are conserved in a redox reaction?

- A Mass only.
- B Charge only.
- C Oxidation number.
- D Neither mass nor charge.
- E Both mass and charge.

Chemistry 225 Final Examination 01-2009	Time allowed: 3 hours	Page 7 of 15
Student Name	Student Number	Section

30. The e.m.f. of the cell: Pt (s)| $H_2(g)$ |HCl (aq)|| CuSO₄ (aq)| Cu (s) does <u>NOT</u> depend on

- A temperature.
- B the size of the copper electrode.
- C the concentration of HCl.
- D the concentration of CuSO₄.
- E the pressure of H_2 .

31. When the contents of an electrochemical cell are at equilibrium, the e.m.f. of the cell

- A is zero.
- B is at a maximum.
- C is negative.
- D is positive.
- E cannot be measured.

Questions 32 - 35 concern the following graphs:

Select, from A to E, the graph which best represents:

32. Rate of reaction versus concentration of X for a reaction which is zero order in X.

33. Rate of reaction versus concentration of X for a reaction which is first order in X.

34. Rate of reaction versus time for a reversible process which attains equilibrium after some time.

35. The titration curve for the titration of a base with an acid.

[3]

Student Name......Student Number.....Section.....

<u>SECTION B</u>: Answer <u>ALL</u> questions <u>in the spaces provided on the question paper</u>.

Remember to include units in your answers wherever appropriate.

1. The following data were obtained for the reaction: $6 I^{-}(aq) + BrO_{3}^{-}(aq) + 6 H^{+}(aq) \rightarrow 3 I_{2}(aq) + Br^{-}(aq) + 3 H_{2}O(l)$

Experiment	Initial [I ⁻]/M	Initial [BrO ₃ ⁻]/M	Initial [H ⁺]/M	Initial Rate of I ₂ formation/Ms ⁻¹
1	0.0020	0.0080	0.020	8.89×10^{-5}
2	0.0040	0.0080	0.020	1.78×10^{-4}
3	0.0020	0.0160	0.020	1.78×10^{-4}
4	0.0020	0.0080	0.040	3.56×10^{-4}

a) Derive the rate law for the reaction.

b) i) Use the data from experiment 1 to find the value of the rate constant, k, stating its correct units. [2]

ii) What would be the value of the <u>rate constant</u> if the concentration of all reactants were doubled? [1]

c) What effect, if any, would doubling the concentration of the reactants have on the energy of activation for the process?

[1]

Chemis	stry 225	Final Examination 01-2009 Time	allowed: 3 hours	Page 9 of 1	5
Studen	t Name.	Student N	umber	Section	••••
	d)	What effect, if any, would increasing the mixture have on the energy of activation			[1]
	e)	What effect, if any, would increasing the have on the value of the rate constant for	-	nixture	[1]
	f)	What effect, if any, would using a catal process?	lyst have on the energy of activ	ation for the	[1]
2.	The ac	tivation energy for the reaction: $2 N_2 O$ (g	g) $\rightarrow 2 N_2(g) + O_2(g)$ is 200 kJ	mol ⁻¹ .	
	How m	any times faster would this reaction proc	ceed at 230°C than at 200°C?		[4]

- The first order rate constant for the decomposition of a certain hormone in water at 25°C is
 0.0342 day⁻¹.
 - a) If a 0.0200 M solution of the hormone is stored for 40 days, what will be its concentration at the end of that period? [3]

[2]

b) What is the half life of the hormone?

c) How many days will it take for a sample of the hormone to be 65% decomposed? [2]

4. Use the given K_p values for the processes X and Y to find K_p for the process Z. [2] Process X: 2 BrF (g) = Br₂ (g) + F₂ (g) $K_p = K_x = 4.57 \times 10^{-5}$ Process Y: Br₂ (g) + 3 F₂ (g) = 2 BrF₃ (g) $K_p = K_y = 5.29$ Process Z: BrF₃ (g) = BrF (g) + F₂ (g) $K_p = K_z$

Chemistry 225 Final Examination 01-2009	Time allowed: 3 hours	Page 11 of 15

Student Name	Student Number	Section

- 5. The equilibrium constant, K_p , for the dissociation of dinitrogen tetroxide to nitrogen dioxide is 11 at 398K. The reaction is: $N_2O_4(g) \rightleftharpoons 2 NO_2(g)$.
 - a) Find the equilibrium partial pressure of each gas when $N_2O_{4,}$ at an initial pressure of 1.20 atm, dissociates at 398 K. [6]

b)	Find the total pressure of the system at equilibrium.	[1]
,		
c)	Find the percent dissociation of dinitrogen tetroxide.	[1]

6. Find the pH of

a) 0.020 M NaOH

b) 0.020 M CH₃COOH

[5]

c) a mixture of 20.0 cm³ of 0.020 M CH₃COOH + 20.0 cm³ of 0.020 M NaOH [7]

Chemistry 225 Final Examination 01-2009	Time allowed: 3 hours	Page 13 of 15
Student Name	Student Number	Section

d) a mixture of 30.0 cm^3 of $0.020 \text{ M CH}_3\text{COOH} + 20.0 \text{ cm}^3$ of 0.020 M NaOH [5]

e) a mixture of 20.0 cm³ of 0.020 M CH₃COOH + 30.0 cm³ of 0.020 M NaOH [4]

7. Derive a balanced **<u>ionic</u>** equation for the reaction by writing half equations and then combining them.

 $PbS(s) + NO_{3}(aq) \rightarrow S(s) + Pb^{2+}(aq) + NO(g) \text{ (in } \underline{acid} \text{ medium)}$ [4]

[1]

Student Name......Student Number.....Section.....

	Eº/V
$MnO_4^-(aq) + 8 H^+(aq) + 5 e^- \rightarrow Mn^{2+}(aq) + 4 H_2O(l)$	+1.51
$Cl_2(g) + 2e^- \rightarrow 2Cl^-(aq)$	+1.36
$Ag^+(aq) + e^- \rightarrow Ag(s)$	+0.80
$Fe^{3+}(aq) + e^- \rightarrow Fe^{2+}(aq)$	+0.77
$\operatorname{NiO}_{2}(s) + 2 \operatorname{H}_{2}O(1) + 2e^{-} \rightarrow \operatorname{Ni}(OH)_{2}(s) + 2 \operatorname{OH}^{-}(aq)$	+0.49
$\operatorname{Cu}^{2+}(\operatorname{aq}) + 2e^{-} \rightarrow \operatorname{Cu}(s)$	+0.34
$2\mathrm{H}^{+}(\mathrm{aq}) + 2\mathrm{e}^{-} \rightarrow \mathrm{H}_{2}(\mathrm{g})$	0.00
$Ni^{2+}(aq) + 2e^{-} \rightarrow Ni(s)$	-0.25
$Fe^{3+}(aq) + 3e^{-} \rightarrow Fe(s)$	-0.036
$Cd^{2+}(aq) + 2e^{-} \rightarrow Cd(s)$	-0.40
$Fe^{2+}(aq) + 2e^{-} \rightarrow Fe(s)$	-0.44
$Cd(OH)_2(s) + 2e^- \rightarrow Cd(s) + 2OH^-(aq)$	-0.81
$Mg^{2+}(aq) + 2e^{-} \rightarrow Mg(s)$	-2.38

8. Use the following table of standard redox potentials wherever necessary.

a) Rechargeable nickel-cadmium cells are used in calculators and other battery powered devices. The cell reaction is:

 $\operatorname{NiO}_2(s) + \operatorname{Cd}(s) + 2\operatorname{H}_2\operatorname{O}(l) \rightarrow \operatorname{Ni}(\operatorname{OH})_2(s) + \operatorname{Cd}(\operatorname{OH})_2(s).$

What is the cell potential of a standard nickel-cadmium cell?

b) The cell notation represents a <u>standard</u> galvanic cell:

Mg (s) | MgCl₂ (aq) || FeCl₃ (aq), FeCl₂ (aq) | Pt (s)

- i) Write a balanced <u>ionic</u> equation for the cell reaction. [1]
- Draw a <u>fully labeled</u> diagram of the galvanic cell. Show the direction of flow of electrons, the polarity of the electrodes and the concentration of all solutions. [5]

Chemistry 2	25 Fin	Time allowed: 3 hours	Page 15 of 15
Student Nar	ne	Student Number	.Section
c)	i)	Find the standard cell potential for a cell in which the reaction $Ag^{+}(aq) + Fe^{2+}(aq) \Rightarrow Ag(s) + Fe^{3+}(aq)$ takes place.	ı: [1]

ii) Find K_c for the process: $Ag^{+}(aq) + Fe^{2+}(aq) \Rightarrow Ag(s) + Fe^{3+}(aq)$ [4]

d) Find the e.m.f of the cell: $Cu(s) | Cu^{2+}(0.001 \text{ M}) || Cu^{2+}(0.250 \text{ M}) | Cu(s)$ [4]

e) Explain why hydrochloric acid cannot be used to provide an acid medium with potassium manganate (VII) as an oxidizing agent. [2]

END OF EXAMINATION