THE COLLEGE OF THE BAHAMAS

FINAL EXAMINATION

SEMESTER 01-2013

		FA	CULTY OF		
SCHOOL OF CHEMISTRY ENVIRONMENTAL AND LIFE SCIENCES					
Campus/Centre:	() Grosvenor Close () Abaco () Eleuther) Northern Bahamas ra () Exuma () C		
				1.05% 0040	
Examination Day:		Thursday	Examination Date:	April 25 th , 2013	
Examination Time	:	9:00AM	Duration:	3 Hours	
Course Abbreviat			225		
Course Title:	Coll	ege Chemistry II			
Name of Student:		print)			
Student Number: _					
Name of Lecturer:	Dlass	se print)		0.0000	
	1 ICE	se print,			

INSTRUCTIONS TO CANDIDATES

1. Please follow instructions given in each section.

INFORMATION FOR STUDENTS

- \bullet Gas constant, $R = 8.31~J~mol^{-1}\,K^{-1} = 0.0821~dm^3\,atm~mol^{-1}\,K^{-1}$
- pV = nRT, 1 atm = 760 mmHg = 101 325 Pa
- $F = 96487 \text{ C mol}^{-1}$

Kinetics

• Rate= $k[A]^x[B]^y[C]^z$...

Table 1: Characteristics of first, second and zeroth order reaction of the type $A \to \text{products}$

First-Order	Second-Order	Zeroth-Order	
$Rate = -\frac{\Delta[A]}{\Delta t} = k[A]$	Rate = $-\frac{\Delta[A]}{\Delta t} = k[A]^2$	$Rate = -\frac{\Delta[A]}{\Delta t} = k[A]^0 = k$	
$\ln[A]_t = -kt + \ln[A]_0$	$\frac{1}{[A]_t} = kt + \frac{1}{[A]_0}$	$[A]_t = -kt + [A]_0$	
Form: $y = mx + b$	Form: $y = mx + b$	Form: $y = mx + b$	
$y = \ln[A]_t, m = -k, x = t, b = \ln[A]_0 y$	$y = \frac{1}{[A]_t}, m = k, x = t, b = \frac{1}{[A]_0}$	$y = [A]_t, m = -k, x = t, b = [A]_0$	
$t_{1/2} = \frac{\ln 2}{k} = \frac{0.693}{k}$	$t_{1/2} = \frac{1}{k[A]_0}$	$t_{1/2} = \frac{[A]_0}{2k}$	

- $k = Ae^{-E_a/RT}$
- $\ln\left(\frac{k_1}{k_2}\right) = -\frac{E_a}{R}\left(\frac{1}{T_1} \frac{1}{T_2}\right)$

Equilibrium

- $A = \epsilon lc$
- $x = \frac{-b \pm \sqrt{b^2 4ac}}{2a}$
- pH=-log[H⁺], pOH=-log[OH⁻]
- $pH + pOH = 14.00 \text{ at } 25 \,^{\circ}C.$
- $pK_a = -\log K_a$, $pK_b = -\log K_b$
- $K_w = [H^+][OH^-] = K_a \times K_b = 1.01 \times 10^{-14} \text{ at } 25\,^{\circ}\text{C}.$
- pH = p K_a + log $\left(\frac{C_b}{C_a}\right)$

• $K_p = K_c \left(\frac{c_0 RT}{p_0}\right)^{\Delta n_{gas}} = K_c (0.0821 T)^{\Delta n_{gas}}$ where $c_0 = 1 \text{ M}$ and $p_0 = 1 \text{ atm.}$

Electrochemistry

- $E_{cell}^{\, \circ} = E_{red}^{\, \circ}(\text{cathode}) + E_{ox}^{\, \circ}(\text{anode})$
- $E = E \frac{RT}{nF} \ln Q$
- $E = E \frac{0.0257}{n} \ln Q$ at 25°C
- $\ln K = \frac{nE^{\circ}}{0.0257}$ at 25°C

Section I: Multiple Choice Questions

Five possible answers are given to each question in this section. Choose the best answer in each case. (33 marks)

Ammonia is oxidized according to the equation,

$$4\,\mathrm{NH_3(g)} + 5\,\mathrm{O_2(g)} \longrightarrow 4\,\mathrm{NO(g)} + 6\,\mathrm{H_2O(g)}$$

If, during a certain time interval, $\Delta[H_2O]$ is 0.004 mol dm⁻³, then $\Delta[NH_3]$, in mol dm⁻³, during the same time interval, is

- A $-3/2 \times 0.004$
- B $3/2 \times 0.004$
- C $-2/3 \times 0.004$
- D $2/3 \times 0.004$
- E $4 \times 6 \times 0.004$
- 2) Relatively slow rates of chemical reaction are most closely associated with
 - A the presence of a catalyst
 - B high temperatures
 - C high reactant concentrations
 - D strong bonds in reactant molecules
 - E low activation energies
- 3) If concentrations are measured in M and time in seconds, the unit for the rate constant of a zeroth order reaction is:
 - $A s^{-1}$
 - $B M s^{-1}$
 - $C = M^{-1} s^{-1}$
 - $D M^{-2} s^{-1}$
 - E unitless
- 4) A chemical reaction, A + B → products, has a rate law of the form,

rate =
$$k[A][B]^2$$
.

The concentration of A is tripled and that of B is doubled. If the temperature remains constant, the rate of reaction increases by a factor of:

- A 2
- B 5
- C = 6
- D 12
- E 18
- 5) Which statement about the overall order of a reaction is true?
 - A The overall order of a reaction can be determined from the correctly balanced net ionic equation for the reaction.
 - B The overall order of a reaction increases with increasing temperature.
 - C The overall order must be a positive integer.
 - D The overall order of an elementary reaction is always equal to its molecularity.
 - E The overall order is the sum of the squares of the exponents in the observed rate law.

Questions 6 to 7 refer to the graph below showing the result of a rate study for the decomposition of uranyl nitrate.

Uranyl nitrate decomposes according to the equation,

$$UO_2(NO_3)_2(aq) \longrightarrow UO_3(s) + 2NO_2(g) + \frac{1}{2}O_2(g).$$

- 6) The rate law for this reaction is
 - A Rate=k
 - B Rate= $k[UO_2(NO_3)_2]$
 - C Rate= $k[UO_2(NO_3)_2]^2$
 - D Rate= $k[UO_2(NO_3)_2]^{-1}$
 - E Impossible to determine from the information given.
- 7) The rate constant, k for the reaction is
 - A -4.29
 - B 4.29
 - C 0.00882
 - D -0.00882
 - E = k can not be determined from the graph
- 8) For a first-order chemical reaction, an expression for the half-life of a reactant is,

$$t_{1/2} = \frac{\ln 2}{k}.$$

Which statement is *true* about the half-life of this first-order reaction?

- A The $t_{1/2}$ is independent of temperature.
- B The $t_{1/2}$ increases with increasing temperature.
- C The $t_{1/2}$ decreases with increasing temperature.
- D The $t_{1/2}$ increases with the increasing initial concentration of reactant.
- E The $t_{1/2}$ decreases with the decreasing initial concentration of reactant.
- 9) Which statement is true for the reaction

$$Cr_2O_7^{2-}(aq) + 6I^-(aq) + 14H^+(aq) \longrightarrow 2Cr^{3+}(aq) + 3I_2(aq) + 7H_2O(l)$$

- A The oxidation number of O does not change.
- B The oxidation number of H changes from +1 to -1.
- C The oxidation number of I changes from -6 to 0.
- D The oxidation number of Cr changes from 6 to +6.
- E I is the oxidising agent.

10) The rate of reaction between A and B follows the rate law,

Rate =
$$k[A]^2[B]$$
.

Which change(s) will affect the value of the rate constant for this reaction?

- I Decreasing the temperature.
- II Adding a catalyst.
- III Increasing the [A].

- A I only.
- B II only.
- C III only.
- D I and II only.
- E II and III only.
- When wine spoils, ethanol is oxidized to ethanoic acid by dissolved oxygen. The K_c for the equilibrium

$$\mathrm{C_2H_5OH(aq)} + \mathrm{O_2(aq)} \Longrightarrow \mathrm{CH_3COOH(aq)} + \mathrm{H_2O(l)},$$

is 1.2×10^{82} at $25\,^{\circ}$ C. The magnitude of the equilibrium constant at this temperature indicates that

- A Wine spoils through a single step process.
- B Wine spoils very fast.
- C Wine spoils very slowly.
- D The $[C_2H_5OH(aq)] >> [CH_3COOH(aq)]$ at equilibrium.
- $\label{eq:coome} \mbox{E} \quad \mbox{The } [\mbox{CH}_3\mbox{COOH}(\mbox{aq})] >> [\mbox{C}_2\mbox{H}_5\mbox{OH}(\mbox{aq})] \mbox{ at equilibrium.}$
- 12) For which reaction does K_p equal K_c ?
 - A $2 \operatorname{CO}(g) + \operatorname{O}_2(g) \Longrightarrow 2 \operatorname{CO}_2(g)$
 - B $CH_4(g) + 2O_2(g) \rightleftharpoons CO_2(g) + 2H_2O(g)$
 - $C \quad CaCO_3(s) \rightleftharpoons CaO(s) + CO_2(g)$
 - D $NH_3(g) \Longrightarrow \frac{1}{2}N_2(g) + \frac{3}{2}H_2(g)$
 - $E \quad 2 O_3(g) \Longrightarrow 3 O_2(g)$
- 13) For the equilibrium system

$$2 \text{ NaHCO}_3(s) \Longrightarrow \text{Na}_2 \text{CO}_3(s) + \text{CO}_2(g) + \text{H}_2 \text{O}(g) \quad \Delta H > 0$$

which change(s) will increase the amount of $CO_2(g)$?

- I Adding NaHCO₃(s)
- II Increasing the volume of the container
- III Increasing the temperature
- A I only
- B II only
- C III only
- D II and III only
- E I, II and III
- 4) Which one of the following statements regarding the ionic product of water (K_w) is not true?
 - A K_w is the product of the hydrogen ion concentration and the hydroxide ion concentration in pure water.
 - B K_w is lower for acidic solutions than for basic solutions at the same temperature.
 - C K_w is altered by a change in temperature.
 - D K_w is 1.0×10^{-14} at 298K.
 - E K_w is constant for any dilute aqueous solution at 298K.

15) Consider the equilibrium system represented by the equation:

$$Fe^{3+}(aq) + SCN^{-}(aq) \Longrightarrow FeSCN^{2+}(aq).$$

If some OH $^-$ is added (instantaneously) to this equilibrium system, keeping the volume constant, which diagram best shows the changes in $[Fe^{3+}]$, $[SCN^-]$, and $[FeSCN^{2+}]$ which occur before equilibrium is restored?

.6) How many electrons on the left or right will be required to balance the following half-reaction?

$$H^+(aq) + ClO^-(aq) \rightleftharpoons Cl^-(aq) + H_2O(l),$$

A 0

B 1

C 2

D 3

E 4

17) The energy profile diagram for the reaction $X + Y \longrightarrow Z$ is shown below.

The addition of a catalyst to this reaction would cause a change in which of the indicated energy differences?

- A I only
- B II only
- C III only
- D I and II only
- E I, II and III
- 18) The acid dissociation constant for the weak acid HA is 3.5×10^{-6} . The pK_a of this acid is nearest to
 - A 1.0×10^{-14}
 - B 2.9×10^{-9}
 - C 5.5
 - D 8.5
 - E 14
- 19) Which indicator is most suitable for detecting the end-point of the titration represented by the following titration curve?

	Indicator	pH range
Α	thymol blue	1.2 to 2.8
В	phenol red	6.8 to 8.4
\mathbf{C}	methyl red	4.2 to 6.2
D	bromothymol blue	6 to 7.6
E	phenolphthalein	8.3 to 10.0

20)	Wh	hich molecule or ion is the str	ongest acid?
	Α	CH ₃ COO	*
	В	CH ₃ COOH	
	C	CFH ₂ COOH	
	D	CF ₂ HCOOH	
	E	CF ₃ COOH	
21)	In a		following species can act as $both$ a Brønsted acid and a Brønsted
	A	HCO ₃	
	В		
	C		
	D	H ₂ O	*
	E	HS -	
22)	Нус	drogen sulphide, H ₂ S, is a di	protic acid with $K_{a1} = 9.5 \times 10^{-5}$ and $K_{a2} = 1.3 \times 10^{-13}$. In spresent with the <i>lowest</i> concentration?
	A	$\mathrm{H_2O}$	
	В	H ₃ O +	
	\mathbf{C}	$\mathrm{H_2S}$	
	D	HS -	
	\mathbf{E}	S ²⁻	
23)			g equal volumes of 0.25 M HOAc(aq) and 0.25 M NaOAc(aq) a resulting solution? HOAc has $K_a=1.74\times 10^{-5},\ pK_a=4.76.$
	Λ	1.12	
	В	2.68	
	\mathbf{C}	4.76	
	D	7.00	
	\mathbf{E}	9.24	
24)	Inv		e same oxidation number as it does in H ₂ SO ₄ ?
	Α	H_2SO_3	
	В	$S_2O_3^{2-}$	
	\mathbf{C}	S ²⁻	
	D	S_8	
	E	SO_2Cl_2	
			eous solutions containing equal concentrations (0.1 M) of the CH ₃ COOH)= 1.8×10^{-5} , $K_b({\rm NH_3})=1.8\times10^{-5}$.
		A	NaCl
		В	HCl and NaCl
		C	CH ₃ COOH and NaCH ₃ COO
		D	NaOH and NH ₃
		Е	NH ₃ and CH ₃ COOH
25)	$Th\epsilon$	e solution with the lowest pH	
26)	The	e most nearly neutral solution	
?7)	A b	buffer with a pH ≈ 5	

28)

The solution with the highest pH.

- 29) Equal volumes of 0.25 M HNO₂(a weak acid) and 0.25 M HNO₃ (a strong acid) are titrated separately with 0.25 M KOH. Which would nearly be the same for both titrations?
 - Λ The K_a of the acids.
 - B The initial pH.
 - C The indicator used.
 - D The pH at the equivalence point.
 - E The pH when 5 cm³ of excess KOH has been added.
- 30) The relationship between the K_{sp} of AgBr and the molar solubility, s, of AgBr in 0.10 M KBr is that K_{sp} is approximately equal to
 - $A s^2$
 - B s/0.10
 - $C = \sqrt{s}$
 - D $4s^3$
 - E 0.10 s
- 31) Which of the following reactions reactions might consist of a single elementary step?
 - $\text{I} \qquad \qquad \text{CH}_3\text{C}{\equiv}\text{N} \longrightarrow \text{CH}_3\overset{\oplus}{\text{N}}{\equiv}\overset{\ominus}{\text{C}}$
 - II $H_2(g) + I_2(g) \longrightarrow 2HI(g)$
 - III $2 \operatorname{Fe}^{3+}(aq) + 3 \operatorname{H}_2 S(aq) \longrightarrow 2 \operatorname{Fe} S(s) + S(s) + 6 \operatorname{H}^+(aq)$
 - A I only.
 - B II only.
 - C I and II only.
 - D II and III only.
 - E I, II and III.
- 32) Based on the standard electrode potentials given which is the strongest oxidizing agent?

$$Ag^{+}(aq) + e^{-} \rightleftharpoons Ag(s)$$
 $E^{*} = +0.80$

$$Cu^{2+}(aq) + 2e^{-} \rightleftharpoons Cu(s)$$
 $E^{\Leftrightarrow} = +0.34$

$$Pb^{2+}(aq) + 2e^{-} \rightleftharpoons Pb(s)$$
 $E^{-} = -0.13$

- A Ag(s)
- $B Ag^+(aq)$
- C Cu(s)
- D Pb(s)
- E $Pb^{2+}(aq)$
- When the contents of an electrochemical (voltaic) cell are at equilibrium, the e.m.f. of the cell, E_{cell} , is
 - A zero.
 - B negative.
 - C positive.
 - D at a maximum.
 - E is equal to E_{cell}^{\bullet} .

Section II: Structured Questions

Answer each of the following five questions in the spaces provided on the question paper. Clear and concise expression is an essential part of a good answer. (62 marks)

 The following sequence of elementary steps is a proposed mechanism for a hypothetical reaction in the gas phase. Step II is the rate determining step.

Step I
$$A \underset{k_{-1}}{\overset{k_1}{\rightleftharpoons}} B$$

Step II
$$\longrightarrow C + D$$

a) Write the net overall equation associated with this mechanism. [1 mark]

b) Is B behaving as a catalyst or intermediate? Justify your answer. [2 marks]

c) Show that the rate law consistent with this mechanism is

Rate =
$$k_{obs}[A]$$
,

where k_{obs} is the observed experimental rate constant. [4 marks]

d) Experiments were performed to determine the [A] for this reaction at various times, t. Data from these experiments were used to produce the graph below.

- i) Label the vertical axis. [1 mark]
- ii) Explain how to determine the rate constant, k_{obs} , from this graph. [2 marks]

e) Given that the *overall* reaction is *exothermic*, sketch an energy profile diagram for this reaction on the axes provided. [4 marks]

2) At 600 K, the K_p for the decomp	osition	reaction
---------------------------------------	---------	----------

$$2\operatorname{BrCl}(g) \rightleftharpoons \operatorname{Cl}_2(g) + \operatorname{Br}_2(g)$$
 (1)

is 4.00. Some BrCl(g), $Cl_2(g)$ and $Br_2(g)$ are placed in a container and at the instant of mixing the non-equilibrium partial pressures of these gases are 1.00 atm for BrCl(g), 3.00 atm for $Cl_2(g)$ and 3.00 atm for $Br_2(g)$.

a) Confirm that this initial mixture of gases is a non-equilibrium mixture. [3 marks]

b) Complete an 'ICE' table and find the equilibrium partial pressures of each gas when the system reaches equilibrium at 600 K. [5 marks]

c) What effect, if any, will a decrease in the volume of the container have on the equilibrium position? Justify your answer. [2 marks]

d) The pictures below represent equilibrium mixtures at 375 K and 450 K for the reaction represented by Eq. (1). Is this reaction exothermic or endothermic. Justify your answer. [3 marks]

e) Given (same temperature throughout):

$$2 \operatorname{BrCl}(g) \rightleftharpoons \operatorname{Cl}_2(g) + \operatorname{Br}_2(g)$$
 (1) $K_{p1} = 0.269$
 $2 \operatorname{IBr}(g) \rightleftharpoons \operatorname{Br}_2(g) + \operatorname{I}_2(g)$ (2) $K_{p2} = 0.0149$

Determine K_{p3} for the reaction

$$BrCl(g) + \frac{1}{2}I_2(g) \rightleftharpoons IBr(g) + \frac{1}{2}Cl_2(g)$$
 (3)

3) The graph below illustrates the result of titrating $20\,\mathrm{cm}^3$ of a 0.10 M solution of the weak acid, $\mathrm{HA(aq)}$, with a 0.10 M solution of the strong base, $\mathrm{NaOH(aq)}$. The K_a of the weak acid HA is 6.3×10^{-5} at $25\,^{\circ}\mathrm{C}$.

- a) Name the titrant. [1 mark]
- b) Describe two features of the curve which identify HA as a weak acid. [2 marks]

c) Calculate the pH of the solution after 10 cm³ of titrant has been added. [3 marks]

d) On the graph provided above, sketch the curve resulting from the titration of 20 cm³ of 0.1M HCl with 0.10M NaOH. [3 marks]

4) a) The equation for the dissolution of $Mn(OH)_2(s)$ in water at 25 °C is

$$Mn(OH)_2(s) \rightleftharpoons Mn^{2+}(aq) + 2OH^-(aq).$$

In a saturated solution of $Mn(OH)_2(s)$ the $[OH^-]=3.63\times 10^{-5}$. Calculate the value of K_{sp} , for $Mn(OH)_2(s)$ at 25 °C. [4 marks]

b) $Mn(OH)_2(s)$ is oxidized to $MnO_2(s)$ by the bismuthyl(III) cation, BiO^+ in basic solution. The $BiO^+(aq)$ is simultaneously reduced to Bi(s). Write balanced half-reactions and the overall net ionic equation for this redox reaction. [5 marks]

5) Consider the following spontaneous redox reaction:

$$5 \operatorname{Fe}^{2+}(\operatorname{aq}) + \operatorname{MnO}_{4}^{-}(\operatorname{aq}) + y \operatorname{H}^{+}(\operatorname{aq}) \Longrightarrow 5 \operatorname{Fe}^{3+}(\operatorname{aq}) + \operatorname{Mn}^{2+}(\operatorname{aq}) + \frac{y}{2} \operatorname{H}_{2} \operatorname{O}(\operatorname{l}). \tag{2}$$

- a) Deduce, from Eq. (2), that the value of y must be 8. Show your reasoning. [3 marks]
- b) Determine how many electrons are transferrred in the reaction represented by Eq. (2)? [2 marks]
- c) Identify the reducing agent in this reaction. [1 mark]
- d) Calculate the standard e.m.f. (E_{cell}^{\bullet}) for this reaction, given the standard reduction potentials in the table below. [2 marks]

Reduction half-reaction	E [⊕] /volt at 25°C
$Fe^{3+}(aq) + e^{-} \rightleftharpoons Fe^{2+}(aq)$	+0.770
$MnO_4^-(aq) + 8H^+(aq) + 5e^- \iff Mn^{2+}(aq) + 4H_2O(l)$	+1.51

- e) Write the expression for the reaction quotient, Q from Eq. (2) with y = 8. [1 mark]
- f) If all ion concentrations are 1 M, except H⁺ ions, determine the pH of the solution in the cathode half-cell compartment if the measured cell potential is +0.58 v at 25 °C. [4 marks]