USEFUL INFORMATION: 1 atm = 101.3kPa = 760mmHg; R = 8.314J mol⁻¹K⁻¹ = 0.0821dm³atm mol⁻¹K⁻¹; the molar volume of any gas at STP is 22.4 dm³ mol⁻¹; Avogadro's number = 6.02×10^{23}

SECTION I: MULTIPLE CHOICE

Select the SINGLE best alternative in each of the following cases and 'SHADE IN' in the appropriate letter on the separate multiple choice answer sheet. (25 MARKS)

1) How many molecules are in 22,400 cm³ of SO₃(g) at STP?

A 1

- B 22,400
- C $0.01 \times 6.02 \times 10^{23}$
- D 6.02 x 10²³
- E $4 \times 6.02 \times 10^{23}$
- 2) What is the total number of moles of ions present in 2 moles of $(NH_4)_2CO_3$?

- B 6
- C 14
- D 28
- 28 x 6.02 x 10²³
- 3) In which of the following pairs of aqueous solutions will a precipitate NOT form.
 - barium chloride and copper(II) nitrate
 - В silver nitrate and sodium chloride
 - \mathbf{C} potassium carbonate and barium nitrate
 - zinc chloride and sodium hydroxide D
 - iron(III) sulphate and ammonia
- Which one of the following ions is NOT 4) isoelectronic with the neon atom?
 - Na+ Α
 - В O^{2-}
 - \mathbf{C} Al^{3+}
 - D Ca²⁺
 - E
- 5) Sulphur tetrafluoride, SF₄ is an example of a
 - T-shaped molecule
 - tetrahedral molecule В
 - C bent molecule
 - D distorted tetrahedral (seesaw)
 - trigonal pyramidal
- 6) In a mixture of CO(g) and CO₂(g), the mole fraction of CO(g) (X_{CO}) is 0.22. If the pressure of the mixture is 3.00 atm, the partial pressure of CO₂ is
 - A 0.66 atm
 - В 1.25 atm
 - \mathbf{C} 2.21 atm
 - D 2.34 atm
 - E impossible to determine
- 7) The root-mean-square speed of an ideal gas can defined by the following expression,

$$\mu_{rms} = \sqrt{\frac{3RT}{M}}$$

where T is the temperature of the gas. If the temperature of a gas is doubled, how much

is the root-mean-square speed (μ_{rms}) of the molecules increased?

- by a factor of $2_{1/2}$ by a factor of $2^{1/2}$ В
- by a factor of 3/2by a factor of $3^{1/3}$ C
- D
- by a factor of 6
- 8) Which of the following salts is NOT soluble in water

K₂CO₃ Α

- В Na₂SO₄
- C BaCO₃
- D K2CrO4
- Ε AgNO₃
- 1 cm³ of water is added to 2 cm³ of a 9) solution with molarity M at a constant temperature. After dilution the molarity of the solution is

Α 1/2 M

- В 1/3 M
- C 2/3 M
- D 3 M
- 10) A 0.2 mol sample of a hydrocarbon C, H, yields, after complete combustion with excess O₂ gas, 0.40 mol of CO₂ and 0.4 mol of H₂O as the only products. The molecular formula of the hydrocarbon is

 $\begin{array}{c} C_2H_2 \\ C_2H_4 \\ C_2H_6 \end{array}$ A

- В
- \mathbf{C}
- D C_4H_8
- Ε C_4H_{10}
- Arrange the following atoms in order of 11) DECREASING electronegativity.

As, F, S, Zn

- В F, S, As, Zn
- F, Zn, As, S C
- F, Zn, S, As F, S, As, Zn D
- Ε
- Two glass bulbs are connected by a closed centre valve. A 0.50 dm³ bulb is filled with $N_2(g)$ at 25°C to a pressure of 3.0 atm and a 1.00 dm³ bulb is filled with O₂(g) at 25°C to a pressure of 6.0 atm. If the centre valve is opened allowing the gases to mix and no temperature change is observed, the final pressure in the apparatus will be

Α 3.0 atm

- В 4.0 atm
- C 5.0 atm
- D 6.0 atm
- 7.0 atm

QUESTIONS 13-19 concern the following VSEPR shapes:

- A bent or V-shaped
- B trigonal planar
- C tetrahedral
- D trigonal pyramidal
- E linear
- 13) O₃
- 14) CO_3^{2}
- 15) SO_3
- 16) SO_3^{2}
- 17) SiCl₄
- 18) CO₂
- 19) SO₂
- 20) The following elements are in the fourth period of the periodic table.
 - Ca V Co Zn As

Of those listed, which ones all have unpaired electrons in the ground state?

- A Ca, V and Co
- B V, Co and Zn
- C Ca, Zn and As
- D V, Co and As
- E Zn and As
- 21) Which one of the following sets of elements has atomic radii which change only slightly with increasing atomic number?
 - A the noble gases
 - B the halogens
 - C the transition elements
 - D the alkali metals
 - E the alkaline earth metals

- 22) When excess zinc reacts with 0.5 mol of copper(II) ions in solution, 108 kJ of energy is released. What is the heat of reaction, ΔH° in kJmol⁻¹?
 - A -108
 - B + 108
 - C -216
 - D -162
 - E +216
- 23) For which of the following substances does $\Delta H_f^{\circ} = 0$
 - A $Br_2(g)$
 - B N(g)
 - C C(g)
 - D CO(g)
 - $E ext{Ne}(g)$
- 24) A porous container is filled with equal amounts of $N_2(g)$ and an unknown gas. The $N_2(g)$ escaped 2.3 times faster than the unknown gas through a tiny hole. What is the molar mass of the unknown gas?
 - A 148
 - B 146
 - C 64
 - D 32
 - E 12
- 25) If a sample of an ideal gas, in a sealed container of fixed volume, is heated from 10°C to 40°C, which of the following quantities will remain constant?
 - A The pressure of the gas
 - B The total kinetic energy of the gas
 - C The average speed of the molecules
 - D The density of the gas
 - E The temperature of the gas

USEFUL INFORMATION: 1 atm=101.3kPa=760mmHg; R=8.314J mol⁻¹K⁻¹=0.0821dm³atm mol⁻¹K⁻¹; the molar volume of any gas at STP is 22.4 dm³ mol⁻¹; Avogadro's number=6.0 x 10²³

SECTION II: STRUCTURED QUESTIONS

Answer each of the following questions in the spaces provided on the question paper. Clear and concise expression is an essential part of a good answer. (55 MARKS)

1) Excess aqueous hydrochloric acid was added to a 0.415 g sample of an alloy of aluminum and copper. The aluminium dissolved according to the reaction

$$Al(s) + 3HCl(aq) \rightarrow AlCl_3(aq) + 3/2H_2(g)$$

The copper did not dissolve and remained unchanged as the pure metal. The gaseous hydrogen produced was collected over water. The volume of the collected gas was 436 cm³ at 24.6°C and 746.6 mmHg.

a) Write the net ionic equation for this reaction. (1 MARK)

2)

b) If the alloy is 73.7% aluminium, calculate the vapour pressure of water at 24.6°C in mmHg? (5 MARKS)

a) l (i)	In each of the following cases write a thermochemical equation to represent the statement give. The standard enthalpy of formation of water vapour is -241.8 kJmol ⁻¹ . (1 MARK)
(ii)	The enthalpy of atomization of methane is 121 kJmol ⁻¹ . (1 MARK)
(iii)	The second electron affinity of oxygen is 791 kJmol ⁻¹ . (1 MARK)
(iv)	The enthalpy of combustion of propane (C ₃ H ₈) is -2040 kJmol ⁻¹ . (1 MARK)
b) .	An element X has successive ionization energies in kJmol ⁻¹
,	740, 1500, 7700, 10500, 13600, 18000, 21700
	Another element Y has successive ionization energies in kJmol ⁻¹
	1310, 3400, 5300, 7500, 11000, 13300, 71300, 84100
(i)-	To which group of the periodic table does X belong? (1 MARK)
(ii)	To which group of the periodic table does Y belong? (1 MARK)

Use the bond energies given to predict a value for the standard enthalpy change for the reaction. (4 MARKS)

$$C_2H_4 + Cl_2 \rightarrow C_2H_4Cl_2$$

Bond energies:

C-C 345 kJmol⁻¹ C=C 610 kJmol⁻¹

Cl-Cl 239 kJmol⁻¹

C-Cl 335 kJmol⁻¹

- The combustion of cyanamide, $N \equiv CNH_2$ (s) produces $CO_2(g)$, $N_2(g)$ and $H_2O(l)$. The standard heat of combustion of cyanamide is -741 kJmol⁻¹. $\Delta H_f^{\circ}(CO_2(g) = -393.5 \text{ kJ mol}^{-1})$ and $\Delta H_f^{\circ}(H_2O(l) = -285.8 \text{ kJ})$ 3) mol⁻¹).
 - Write a balanced equation for the combustion of cyanamide. (2 MARKS) a)
 - Calculate $\Delta H_f^{\circ}(N \equiv CNH_2, s)$ (4 MARKS) b)

What mass of cyanamide must be burned to produce 100,000 J of heat? (2 MARKS) c)

	to sketch its three dimensional shape. Explain your reasoning. (4 MARKS)
·	
3.	
b)	Which type of intermolecular forces of attraction exist between PF ₃ Cl ₂ molecules? Explain choice(s). (2 MARKS)
, ,	
c)	Do you think a similar compound, PBrF ₂ Cl ₂ , would have a higher or lower boiling point PF ₃ Cl ₂ ? Explain your reasoning. (3 MARKS)
	113C12: Explain your reasoning. (5 WARKS)
Iodin	ie, $I_2(aq)$, reacts with the thiosulfate ion, $S_2O_3^{2-}(aq)$ to form the iodide ion, $I^{-}(aq)$ and the tetrathi
ion,	$\mathbb{S}_4\mathrm{O}_6^{2-}(\mathrm{aq}).$
a)	Write the balanced chemical equation for this reaction. (1 MARK)
b)	How many grams of I ₂ will react with 25.0 cm ³ of a 0.050M solution of sodium thiosulp
•	$Na_2S_2O_3$? (4 MARKS)
	· · · · · · · · · · · · · · · · · · ·

How many cm³ of 0.050M $Na_2S_2O_3$ contains 690 mg of $Na^+(aq)$?(3 MARKS)

•						
(a)	How m	any valence el	lectrons are there in (3	MARKS)		
	(i) I	Rb				
	(ii)	Mg^{2+}				
	(iii)	S ²⁻				
	D. 11.4	41	the electron configuration	on of a calonium star	m (7-24) (1 MAP	···
(i)	Predict	the ground sta	ate electron configurati	on of a selenium ator	m (Z=34). (1 MAR	eK
(i)	Λ	ALWAY .			m (Z=34). (1 MAR	eK
(i)	(ii)	Draw the orbit	tal diagram for V and (Cu ⁺ . (4 MARKS)	m (Z=34). (1 MAR	ek
(i)	(ii)	Draw the orbit		Cu ⁺ . (4 MARKS)	m (Z=34). (1 MAR	eK
(i)	(ii) For example 1	Draw the orbit	tal diagram for V and (Cu ⁺ . (4 MARKS)	m (Z=34). (1 MAR	ek
(i)	(ii) For example 1	Draw the orbit	tal diagram for V and (Cu ⁺ . (4 MARKS)	m (Z=34). (1 MAR	RK.
(i)	(ii) For example 1	Draw the orbit	tal diagram for V and (Cu ⁺ . (4 MARKS)	m (Z=34). (1 MAR	ek
(i)	(ii) For example 1	Draw the orbit ample, the orb V:	tal diagram for V and (Cu ⁺ . (4 MARKS)	m (Z=34). (1 MAR	ek
(i)	(ii) For example 1	Draw the orbit ample, the orb V:	tal diagram for V and (Cu ⁺ . (4 MARKS)	m (Z=34). (1 MAR	eK.
(i) c)	(ii) For example with the control of	Draw the orbit ample, the orb V: Cu+:	tal diagram for V and (Cu ⁺ . (4 MARKS) m is $\frac{1 \mid 1}{1s} \mid \frac{1}{2s}$ n numbers, n, 1, m ₁ , 1		

d) The ΔH_f° for F(g) is 78.99 kJ mol⁻¹ and the ΔH_f° for F⁻ (g) is - 255.39 kJ mol⁻¹. Calculate the first electron affinity for fluorine under these standard conditions. (3 MARKS)

END OF EXAMINATION